Главная >> Реферат >> Статистика

1 2 3 4 5

Сведения о заработной плате, стажу и степени выполнения норм по 30 рабочим на промышленном предприятии

i

y, зар.плата

x1, разряд

x2, степень вып. норм

1

2

3

4

1

1100,1

5

117,4

2

1121,3

5

118,3

3

700,5

3

102,4

4

801,5

5

113,7

5

714,5

4

101,5

6

1500,5

7

127,5

7

1100,9

6

118,4

8

575,8

4

97,4

9

1598,5

7

134,5

10

704,5

4

98,5

11

714,5

4

101,5

12

763,1

4

109,4

13

670,4

2

121,3

14

764,3

4

117,4

15

1307,4

7

129,7

16

800,4

5

118,6

Продолжение табл.2.3.

1

2

3

4

17

619,7

4

103,3

18

1607,4

7

136,7

19

614,1

6

114,9

20

691,8

4

100,3

21

576,4

3

100,9

22

900,7

5

99,6

23

587,3

6

105,4

24

814,4

6

103.7

25

767,5

5

111,1

26

1409.5

7

127,3

27

1499,7

7

129,9

28

904,4

6

117,7

29

871,3

5

105,4

30

860,5

5

103,2

Итого

152

3386,9

Оценки а0, а1, а2 следует рассчитать по методу наименьших квадратов.

1 5 117,4 1100,1 1 … 1

X = : : : , Y = : , XT = 5 … 5

1 5 103,2 860,5 117,4 … 103,2

30 152 3386,9 27662,9

XTX = 152 824 17466 , XTy = 150068,4 ,

3386,9 17466 38632,4 3215384

0,004570565 -0,000891327 2,27457Е-06

(XTX)-1 = -0,000891327 0,000172501 1,53416Е-07 .

2,27457Е-06 1,53416Е-07 –3,37237Е-07

Вектор оценок параметров уравнения линейной регрессии равен (см.формулу 2.6.) :

-0,01133

а = 42,08981 .

7,313614

Уравнение линейной регрессии с данными оценками параметров имеет следующий вид:

у = -0,01133 + 42,08981*х1 + 7,313614*х2.

Далее следует проводить анализ коэффициентов регрессии.

2.5.Анализ коэффициентов регрессии

В общем случае, чтобы сделать коэффициенты регрессии сопоставимыми, применяют нормированные коэффициенты регрессии.

Коэффициент показывает величину изменения результативного признака в значениях средней квадратичной ошибки при изменении факторного признака хj на одну среднеквадратическую ошибку:

(2.7)

где аj – коэффициент регрессии при факторе хj;

j – 1,2,…,m; m – число факторных признаков;

  • среднеквадратическое отклонение факторного признака хj;

  • среднеквадратическое отклонение результативного признака.

Для множественной регрессии также определяются частные коэффициенты эластичности Эj относительно хj:

(2.8)

где - частная производная от регрессии по переменной хj;

хj – значение фактора хj на заданном уровне;

у – расчетное значение результативного признака при заданных уровнях факторных признаков.

Коэффициент Эj показывает, на сколько процентов изменится результативный признак при изменении факторного признака на 1 процент при фиксировании значений остальных факторов на каком-либо уровне. Если в качестве такого уровня принять их средние значения, то получаем средний коэффициент эластичности.

По данным рассматриваемого примера имеются следующие оценки:

Среднее квадратическое

отклонение: х1=1,3; х2=11,5; у=30,4.

Среднее: х1=5; х2=112,9; у=922,1.

- коэффициент: 1=1,8; 2=2,8.

Эластичность: Э1=0,241; Э2=0,96.

Из анализа полученных результатов по коэффициенту эластичности вытекает, что в среднем второй фактор (степень выполнения норм) в 3,9 раз сильнее влияет на результат (заработную плату), чем первый (разряд):

Э21=0,96/0,24=3,9 ,

Анализ же уравнений регрессии по нормированным коэффициентам j показывает, что второй фактор влияет сильнее всего лишь в 1,5 раза ( 1/ 2=1,5), т.е. нормированный коэффициент определяет факторных признаков на результат более точно, т.к. он учитывает вариации факторов.

ЗАКЛЮЧЕНИЕ

Изучив методы статистического анализа, а именно: метод группировки и корреляционный анализ ( парный и множественный ) и применив полученные знания к изучению состава кадров на промышленном предприятии, можно сделать следующие выводы.

С помощью типологической группировки по профессии выявляется следующая тенденция: большинство рабочих на данном промышленном предприятии являются помощниками бурильщиков ( 37% ), что составляет огромный потенциал для дальнейшего профессионального роста и расширения деятельности данной организации.

Структурная группировка по разряду работников характеризует персонал как среднеквалифицированный, т.к. наблюдается наличие большого количества работников 4 и 5 разрядов ( 54%), в то время как работники 6 и 7 разрядов составляют лишь 37% , а низкоквалифицированные (2 и 3 разряды) – 9%.

Группировка работников по стажу показывает, что большинство работников имеет стаж от 2 до 5 лет ( 33%) и стаж от 5 до 8 и от 8 до 11 лет по 20%. Также наблюдается тенденция к снижению работников с высоким стажем, что подтверждает гистограмма распределения работников по стажу (см. рис.1.1).

Парный корреляционный анализ позволил обнаружить зависимость заработной платы от стажа: с увеличением стажа работников увеличивается их заработная плата, хотя работники со стажем 5-8 лет и 8-11 лет получают в среднем одинаковую заработную плату (915 т.р.), также как и работники со стажем в интервале 14-17 лет и свыше 17 лет ( их заработная плата 1515 т.р.).

Это подтверждает таблица, составленная из группировки работников по стажу и соответствующих каждому интервалу средних значений заработной платы (см.табл.2.2).

Многофакторный анализ зависимости зарплаты от степени выполнения норм и разряда работников показывает, что степень выполнения норм влияет на заработную плату в 1,5 раза сильнее, чем разряд работников (при использовании нормированного коэффициента анализа уравнений регрессии).

Таким образом, использование методов группировки и корреляционного анализа позволило провести исследование состава кадров на промышленном предприятии. Основываясь на полученных выводах, можно повысить уровень работы с персоналом, а следовательно косвенно увеличить производительность труда и степень выполнения норм работниками, что особенно важно в условиях постоянно меняющейся экономической ситуации.

СПИСОК ЛИТЕРАТУРЫ

  1. Герчук Я.П. Графики в математическо-статистическом анализе. – М.: Статистика, 1972.

  2. Ефимова М.Р., Петрова Е.В., Румянцев В.Н. Общая теория статистики. – М.:ИНФРА-М, 1996.

  3. Кильдишев Г.C., Аболенцев Ю.И. Многомерные группировки. – М.: Статистика, 1978.

  4. Общая теория статистики : учебник / Под.ред. А.А.Спирина. – М.: Финансы и статистика, 1996.

  5. Сиськов В.И. Корреляционный анализ в экономических исследованиях. – М.: Статистика, 1975.

  6. Теория статистикки : учебник /Под.ред. Р.А.Шмойловой. – М.: Финансы и статистика, 1996.

Приложение 1

Состав рабочих на промышленном предприятии

ФИО

Профессия

Разряд

Степень выполнения норм, %

Стаж, лет

Зарплата,т.р.

1

Алексеев

Бурильщик

5

117,4

8

1100,1

2

Антонов

Бурильщик

5

118,3

8

1121,3

3

Бердяев

Проходчик

3

102,4

5

700,5

4

Воронин

Взрывник

5

113,7

4

801,5

5

Державин

Пом.бурильщика

4

101,5

4

714,5

6

Дронин

Бурильщик

7

127,5

17

1500,5

7

Дьячнов

Проходчик

6

118,4

9

1100,9

8

Жилин

Проходчик

4

97,4

0,8

575,8

9

Княжев

Взрывник

7

134,5

19

1598,5

10

Корлев

Пом.бурильщика

4

98,5

2

704,5

11

Косин

Пом.бурильщика

4

101,5

7

714,5

12

Ламин

Пом.бурильщика

4

109,4

7

763,1

13

Марков

Горнорабочий

2

121,3

5

670,4

14

Москвин

Проходчик

4

117,4

4

764,3

15

Носов

Взрывник

7

129,7

6

1307,4

16

Осипов

Пом.бурильщика

5

118,6

4

800,4

17

Пахомов

Пом.бурильщика

4

103,3

3

619,4

18

Петров

Бурильщик

7

136,7

16

1607,4

19

Порохов

Взрывник

6

114,9

4

614,1

20

Родге

Пом.бурильщика

4

100,3

2

691,8

21

Рылин

Пом.бурильщика

3

100,9

2

576,4

22

Светлов

Бурильщик

5

99,6

4

900,7

23

Тихинов

Взрывник

6

105,4

7

587,3

24

Торопов

Проходчик

6

103,7

10

814,4

25

Уфимов

Проходчик

5

111,1

11

767,5

26

Френкель

Бурильщик

7

127,3

12

1409,5

27

Фролов

Бурильщик

7

129,9

15

1499,5

28

Хвостов

Пом.бурильщика

6

117,7

11

904,4

29

Цветов

Пом.бурильщика

5

105,4

10

871,3

30

Яров

Пом.бурильщика

5

103,2

10

860,5

1 2 3 4 5

Похожие работы: