Реферат : Поле. Примеры полей. Свойства полей. Поле рациональных чисел 


Полнотекстовый поиск по базе:

Главная >> Реферат >> Математика


Поле. Примеры полей. Свойства полей. Поле рациональных чисел




Поле. Примеры полей. Свойства полей. Поле рациональных чисел

Рассматривается определение поля, примеры и простейшие свойства полей, определения подполя, простого поля и поля рациональных чисел.

п.1. Определение поля.

Определение. Пусть - кольцо с единицей 1. Элемент из множества называется обратным в кольце , если . называется обратным к .

Примеры.

Рассмотрим кольцо целых чисел, то есть кольцо , элемент 2 необратим в этом кольце, так как , элемент 5 необратим в кольце целых чисел. - обратимые элементы в кольце целых чисел

Рассмотрим кольцо рациональных чисел , обратимыми являются все элементы кроме .

Рассмотрим кольцо действительных чисел, то есть кольцо , обратимыми являются все элементы кроме .

Определение. Поле – это кольцо , если:

- коммутативное кольцо (операция коммутативна)

- кольцо с единицей 1, единица .

Всякий ненулевой элемент кольца обратим.

Примеры полей.

- поле рациональных чисел.

- поле действительных чисел.

Это поля с бесконечным числом элементов. Рассмотрим поле с конечным числом элементов.

Поле Галуа - галуафилд. ; . Определим

операции сложения и умножения:

И - бинарные операции, - унарная

Из этой таблицы видно, что операция - коммутативна, -бинарные операции, - унарная операция, т.к. , .

п.2. Простейшие свойства поля.

Пусть - поле. Обозначение: .

Если , то .

Доказательство. Пусть , докажем, что , то есть , тогда противоречие с аксиомой поля . Если , то по аксиоме полей | , .

Если , . умножим равенство справа на , то есть .

.

Доказательство. Если , то , умножая обе части равенства на слева, .

В поле нет делителей 0.

Доказательство. Следует из свойства 3, применяя законы контрапозиции: , , значит нет делителей нуля.

Каждое поле является областью целостности.

Доказательство. Следует из определения поля и области целостности.

.

Доказательство. . Умножим обе части равенства справа на , где .

, где .

Доказательство. Выпишем правую часть равна левой части.

, где .

Доказательство. Правая часть равна левой части.

, .

Доказательство. Правая часть левая часть.

, .

Доказательство. Левая часть .

, .

Если , то .

Доказательство. Вычислим произведение то есть обратный элемент к .

, где .

Доказательство. Левая часть равна равна правой части.

- коммутативная группа, которая называется мультипликативной группой не равных 0 элементов.

Доказательство. Следует из свойств поля:

1. , так как поле.

2.

3.

4. , так как поле

Так как поле – это кольцо определённого вида, то под гомоморфизмами полей понимаются гомоморфизмы полей. Аналогично для изоморфизмов.

п.3. Подполе.

Определение. Подполем поля называется подкольцом с единицей поля , в котором всякий ненулевой элемент обратим. Всякое подполе является полем. Подполе поля , отличное от называется собственным полем.

Определение. Поле называется простым, если оно не имеет собственных подполей.

Пример. Рассмотрим поле действительных чисел, то есть поле . Для того, чтобы найти подполе надо найти подмножества замкнутые относительно операции и подмножеству. Например, поле рациональных чисел является подполем поля действительных чисел.

п.4. Поле рациональных чисел.

Алгебраическая система называется системой рациональных чисел, если:

Алгебра - это поле с единицей 1.

Множество замкнуто относительно операции и

Аксиома минимальности, если такое, что:

а)

б) , тогда .

Список литературы

Е.Е. Маренич, А.С. Маренич. Вводный курс математики. Учебно-методическое пособие. 2002

В.Е. Маренич. Журнал «Аргумент». Задачи по теории групп.

Кострикин А.И. Введение в алгебру. Ч.1 Основы алгебры. – М.: Физмат лит-ра, 2000

Кострикин А.И. Введение в алгебру. Ч.2 Основы алгебры. – М.: Физмат лит-ра, 2000

Кострикин А.И. Введение в алгебру. Ч.3 Основные структуры алгебры. – М.: Физмат лит-ра, 2000

Кострикин А.И. Сборник задач по алгебре. Изд. третье – М.: Физмат лит-ра, 2001

Для подготовки данной работы были использованы материалы с сайта http://referat.ru/

Похожие работы:

  • Расширения полей

    Реферат >> Математика
    ... A есть поле, подполе поля E. Определение. Поле A = А, +, —, •, 1 назы­вается полем алгебраических чисел. Пример. Показать, ... над предыдущим полем есть свойство самого расширения ... только над полем алгебраических чисел, но и над полем рациональных чисел, т. ...
  • Поле комплексных чисел

    Реферат >> Математика
    ... упорядоченного поля выполнены обычные свойства неравенств, известные для действительных чисел. Примерами упорядоченных полей являются поле рациональных и поле действительных чисел ...
  • Экология геофизических полей

    Реферат >> Экология
    ... поля). Искусственные неуправляемые поля (техногенные физические поля) ... развлекательного лекционного примера. Нет ничего ... вопросы рационального ответа. ... комбинаторной топологии больших чисел, к дискретной ... - фундаментальных свойств ("устойчивой неравновесности" ...
  • Алгебраические расширения полей

    Курсовая работа >> Математика
    ... A есть поле, подполе поля E. Определение. Поле A = +А, +, —, •, 1, называется полем алгебраических чисел. Пример. Показать, ... над предыдущим полем есть свойство самого расширения ... только над полем алгебраических чисел, но и над полем рациональных чисел, т. е. ...
  • Культурологія

    Шпаргалка >> Культура и искусство
    ... жизни, отношений между полами, традиций рациональности. Д. Белл, ... Наиболее красноречивым примером служит история ... неупорядоченной совокупностью элементов и свойств , что способствовало закреплению ... Внутреннее просветление мира чисел. 9) Великие завершающие ...
  • Полуполя, являющиеся простыми расширениями с помощью комплексного числа

    Дипломная работа >> Математика
    ... неотрицательных рациональных чисел и неотрицателных действительных чисел комплексным числом на предмет выявления признаков и свойств, позволяющих ... , а значит - полуполе. Теперь приведем примеры полей. является полем, потому что его минимальный многочлен ...
  • Формирование понятия свойств арифметических действий у младших школьников

    Курсовая работа >> Педагогика
    ... методы применения свойств арифметических действий, используемые для рационального решения примеров; эти приемы ... на усвоение детьми некоторых свойств чисел, десятичной системы счисления, ... ряд чисел) 2) Веселые задачи. А вот и мышка бежит. В чистом поле ...
  • Лекции по ТОЭ

    Реферат >> Физика
    ... величин с использованием комплексных чисел? 3. В чем ... рабочие характеристики. Наиболее рациональной и перспективной оказалась ... Круговым вращающимся магнитным полем называется поле, вектор магнитной ... инерционные свойства нелинейного элемента. В качестве примера ...
  • ... математики при изучении положительных и отрицательных чисел в 6 классе как средство активизации деятельности ...

    Дипломная работа >> Педагогика
    ... свойствами ... примеры, а затем 1 вариант проверяет у 2 варианта примеры с д - з, а 2 у 1 варианта проверяет примеры ... рациональных чисел есть число рациональное; произведение любого числа отрицательных чисел – число отрицательное; частное противоположных чисел ...
  • Путешествие по стране чисел

    Сочинение >> Математика
    ... Одна Пятая. Буквой Q обозначают множество рациональных чисел. Были ли вы в городах N ... же носит нас земля. И примеры с нами - мука, Их ... n первых членов прогрессии 4 Свойства Ученики заполняют таблицу. На экране ... он по пояс. На пол вылилась вода: догадался он ...