Курсовая работа : Теория вероятностей (работа 9) 


Полнотекстовый поиск по базе:

Главная >> Курсовая работа >> Математика


Теория вероятностей (работа 9)




Министерство высшего образования Российской Федерации

Ижевский Государственный Университет

Кафедра ВТ

Курсовая работа

Вариант Ж - 5

Выполнил: студент гр. 462

Проверил: Веркиенко Ю. В.

2006 г.

Содержание

Цель работы

Задание

1. Генерирование выборок

2. Поиск оценок для выборок

3. Построение доверительных интервалов математического ожидания и дисперсии

4. Построение доверительного интервала для коэффициента корреляции

5. Построение эмпирической интегральной функции распределения и теоретической (для нормального закона с оценками среднего и дисперсии)

6. Построение эмпирической кривой плотности распределения и теоретической

7. Проверка гипотезы о величине среднего (), дисперсии (2), о нормальном законе распределения (по 2 и по Колмогорову)

8. Проверка гипотезы о независимости выборок и об одинаковой дисперсии в выборках

9. Составление системы условных уравнений и поиск по МНК оценки коэффициентов регрессии

10. Построение доверительных интервалов для коэффициентов регрессии, остаточной дисперсии и ошибок прогноза

11. Оценка значимости факторов по доверительным интервалам

Выводы

Цель работы

Выполнить все одиннадцать пунктов работы по заданию и сделать выводы.

Задание

На ЭВМ по программе случайных нормальных чисел с законом N(,2) генерировать две выборки объема n

x1,,xn (1)

y1,,yn (2)

Для выборок (1), (2) найти оценки Ex, Sx, wx, wy.

Для (1) построить доверительные интервалы для математического ожидания (считая 2 известной и неизвестной) и дисперсии.

Для (1), (2) построить доверительный интервал для коэффициента корреляции.

Для (1) построить эмпирическую интегральную функцию распределения и теоретическую (для нормального закона с оценками среднего и дисперсии)

Для (1) построить эмпирическую кривую плотности распределения, разбив интервал (x(1), x(n)) на 5-6 интервалов. На этом же графике изобразить теоретическую кривую.

Проверить гипотезы: о величине среднего (), дисперсии (2), о нормальном законе распределения (по 2 и по Колмогорову).

Проверить гипотезу о независимости выборок (1), (2), об одинаковой дисперсии в выборках.

Для уравнения (модели) с заданными коэффициентами i составить систему условных уравнений, считая и найти по МНК оценки коэффициентов регрессии. Значения брать из равномерного закона или с равномерным шагом на отрезке [–1, 1].

Построить доверительные интервалы для коэффициентов регрессии, остаточной дисперсии и ошибок прогноза в точках x=-1, 0, 1.

По доверительным интервалам оценить значимость факторов xi=xi. Фактор считается незначимым, если доверительный интервал накрывает значение, равное нулю.

При выполнении курсовой работы использовать значения: среднее выборок Х и У равно 3, дисперсия выборок равна 1. Уровень значимости  = 0.05. С.к.о. ошибки измерений в задаче регрессии 0.2.

  1. Генерирование выборок

На ЭВМ по программе случайных нормальных чисел с законом N(,2) генерируем две выборки объема n = 17, где = 3 и 2 = 1

x1,,xn (1)

y1,,yn (2)

Вариационные ряды:

(1) (2)

  1. Поиск оценок для выборок

Для найденных выборок (1), (2) находим оценки Ex, Sx, wx, wy.

Выборочное среднее:

Квадрат средне – квадратичного отклонения:

Оценка центрального момента 3-го порядка:

Оценка центрального момента 4-го порядка:

Коэффициент эксцесса:

Коэффициент асимметрии:

Оценка корреляционного момента:

Оценка коэффициента корреляции:

Размах выборки:

  1. Построение доверительных интервалов математического ожидания и дисперсии

Для (1) строим доверительные интервалы для математического ожидания (считая 2 известной и неизвестной) и дисперсии.

Считаем 2 известной.

Считаем 2 неизвестной.

Таким образом, при различных вариантах μmin, μmax имеют почти одинаковые значения.

Подставляем табличные значения 24,7 и 5,01 в знаменатели подкоренного выражения и получаем, что

,

,

  1. Построение доверительного интервала для коэффициента корреляции

Для (1), (2) строим доверительный интервал для коэффициента корреляции.

U = 1,96

Так как , то пусть , отсюда z = 0,693

То есть |z| ≤ 0,693.

Если z = –0,693 и z = 0,693, то получим доверительный интервал для коэффициента корреляции –0,6 < Rxy < 0,6.

  1. Построение эмпирической интегральной функции распределения и теоретической (для нормального закона с оценками среднего и дисперсии)

Создание ступенчатой функции, при скачке высотой 1/n.

Построение эмпирических Fx(u), Fy(u) и теоретических интегральных функций распределения. В последних средние и с. к. о. Взяты равными вычисленным оценкам математического ожидания и с. к. о.

Пусть u = 0, 0.001…6, тогда

,

- - - - теоретическая функция распределения.

____ функция для нормального закона с оценками среднего и дисперсии.

  1. Построение эмпирической кривой плотности распределения и теоретической

случайный выборка доверительный интервал

Для (1) построить эмпирическую кривую плотности распределения, разбив интервал (х(1),х(n)) на несколько подинтервалов. На этом же графике изобразить теоретическую кривую.

k*sigx - ширина интервалов разбиения, k - коэффициент шага разбиния. взято симметрично от среднего значения по 4 интервала

- - - - теоретическая функция плотности распределения.

____ эмпирическая кривая плотности распределения.

  1. Проверка гипотезы о величине среднего (), дисперсии (2), о нормальном законе распределения (по 2 и по Колмогорову)

Проверка по критерию согласия Пирсона:

По данным выборки найдем теоретические частоты , затем, сравнивая их с наблюдаемыми частотами , рассмотрим статистику - случайная физическая величина, имеющая распределение с k степенями свободы. Если сумма , то выборочные данные согласуются с нормальным распределением и нет оснований отвергать нулевую гипотезу.

Определим с степенями свободы:

Как видно условие выполняется.

Проверка по критерию согласия Колмогорова:

Условие:

где , где максимальное значение разности между экспериментальным и теоретическим распределением нормального закона.

при для X, и при для Y.

- критическое значение квантиля распределения Колмогорова.

Так как условие – выполняется, то гипотеза о нормальном законе распределения подтверждена.

  1. Проверка гипотезы о независимости выборок и об одинаковой дисперсии в выборках

Чтобы из выборки х получить вариационный ряд необходимо осуществить 18 инверсий (т. е. Q=18).

Проверим гипотезу о независимости :

Так как из нормального закона , то

Так как условие – выполняется, то выборки независимы.

Теперь нам необходимо проверить гипотезу об одинаковой дисперсии в выборках

:

так как F< ,то нет оснований, отвергать нулевую гипотезу.

  1. Составление системы условных уравнений и поиск по МНК оценки коэффициентов регрессии.

Для уравнения модели

Генерируем выборку с шагом

h = 1/N, где N = 100

Пусть даны коэффициенты регрессии:

β0 = 0; β1 = 1; β2 = 1; β3 = 0; β4 = 0; β5 = 1;

Значения матрицы плана

Сформируем элементы матрицы А вида:

Формирование правых частей нормальной системы

Где случайная величина, сгенерированная по нормальному закону с учётом коэффициентов регрессии.

Информационная матрица

Решение относительно коэффициентов регрессии.

Для нахождения вида уравнения регрессии необходимо вычислить коэффициенты регрессии данного уравнения.

Уравнение регрессии :

Графики уравнения регрессии и результатов измерений, по которым определялись коэффициенты регрессии:

- - - - уравнение регрессии

____ случайная выборка из нормального закона

  1. Построение доверительных интервалов для коэффициентов регрессии, остаточной дисперсии и ошибок прогноза

Доверительные интервалы будем находить для каждого элемента вектора оценок коэффициентов регрессии .

В случае нормальных ошибок доверительные интервалы находятся из двойного неравенства:

где - остаточная сумма квадратов; - диагональный элемент ковариационной матрицы вида

так как слагаемых в уравнении регрессии шесть.

(1)

(2)

(3)

Строим интервал для коэф-та регрессии:

Доверительный интервал , где из таблицы находим.

k = 6;

Тогда для r = [1…6] будем

брать соответствующий элемент ковариационной матрицы, и находить доверительный интервал с учётом (1) (2) (3).

Нахождение доверительного интервала для (фактор ):

-

Нахождение доверительного интервала для (фактор ):

Нахождение доверительного интервала для (фактор ):

Нахождение доверительного интервала для (фактор ):

Нахождение доверительного интервала для (фактор ):

Нахождение доверительного интервала для (фактор ):

Доверительные интервалы для ,, не накрывают значение равное нулю, следовательно, факторы ,, являются значимыми, а факторы ,, - незначимыми.

  1. Оценка значимости факторов по доверительным интервалам

Исключив из уравнения регрессии незначимые факторы, приходим к следующему виду:

Таким образом, из графика видно, что при исключении из уравнения регрессии незначимых факторов график не изменился. Найдем доверительный интервал для остаточной дисперсии

при .

А доверительный интервал найдём из следующего двойного неравенства:

Таким образом, доверительный интервал для остаточной дисперсии есть:

Выводы

Таким образом, в данной курсовой работе были изучены методы обработки случайных выборок с нормальным законом распределения. Так же найдены оценки коэффициентов регрессии и построены доверительные интервалы. В последнем пункте работы были оценены значимости факторов по доверительным интервалам.

Похожие работы:

  • Теория Вероятностей

    Реферат >> Математика
    ... изучения таких закономерностей и дает теория вероятностей. Таким образом, теория вероятностей занимается математическим анализом случайных ... из четырех событий: . В самом деле: *=,*=,=,. 2.Вероятность. Теория вероятностей изучает случайные события. Это значит ...
  • Теория вероятности

    Реферат >> Математика
    ... событий устойчивой частости. Основное положение теории Теория вероятности – это наука, занимающаяся изучением закономерностей ... под угрозой. Основные категории теории вероятности. Как и всякая наука, теория вероятности и математическая статистика оперируют ...
  • Теория вероятности

    Реферат >> Статистика
    Вероятность и распределение вероятности. Предмет теории вероятности. Вероятность и статистика. Основные категории теории вероятности. Классическое и статистическое определение вероятности. Теорема сложения вероятностей. Теорема ...
  • Теория вероятностей. От Паскаля до Колмогорова

    Курсовая работа >> Математика
    ... его «Опыте философии теории вероятностей». В главе «Общие принципы теории вероятностей» он сформулировал принцип, ... подсчете вероятностей сложных событий. 10. Возникновение предельных теорем теории вероятностей На последующее развитие теории вероятностей ...
  • Теория вероятностей: наука о случайном

    Реферат >> Математика
    Теория вероятностей: наука о случайном Реферат ученика 9 класса «А» ... физических величин» О. С. Ивашев-Мусатов. «Теория вероятностей и математическая статистика» Э. Борель. «Вероятность и достоверность» И. М. Соболь. «Метод ...
  • Теория вероятностей и математическая статистика

    Учебное пособие >> Математика
    ... , 2003г. 5. Ковалев Е.А. Задачник по теории вероятностей. Тольятти, 2002г. 6. Кремер Н.Ш. Теория вероятностей и математическая статистика. М., Юнита ...
  • Теория вероятностей

    Реферат >> Математика
    ... это задача раздела математики теория вероятности. Теория вероятности является инструментом для изучения ... в теорию вероятностей» 3 изд., М. - Л., 1952. Гнеденко Б. В. «Курс теории вероятностей» 4 изд., М., 1965. Феллер В. « Введение в теорию вероятностей и ...
  • Теория вероятности

    Реферат >> Математика
    ... Содержание Введение 1. Вероятность как событие 2. Вероятность и информация 3. Аксиомы теории вероятности Заключение Список литературы ... треугольника равны соответственно и , а потому вероятность . 3. Аксиомы теории вероятности Суммой двух событий А и В ...
  • Теория вероятностей

    Контрольная работа >> Математика
    ... . Богаров П.П., Печинкин А.В. Теория вероятностей. Математическая статистика – М.: 1998. Венцель Е.С. Теория вероятностей – М.: 1962. Солодовников А.С. Теория вероятностей М.: Просвещение, 1978 ...
  • Теория вероятностей

    Реферат >> Математика
    ... А*В способами. Основные понятия теории вероятностей Событием называется любой исход ... возможных исходах. Основы теории вероятности Суммой событий Аi называется ... проведенных опытов р-вероятность появления события в каждом опыте В теории массового обслуживания ...