Контрольная работа : Область определения функции 


Полнотекстовый поиск по базе:

Главная >> Контрольная работа >> Математика


Область определения функции




Федеральное агентство по образованию

Среднего профессионального образования

«Профессиональный лицей №15»

Кафедра: Станочник (металлообработка)

Контрольная работа

по курсу: «Математика»

на тему: «Область определения функции»

Выполнил студент гр. Т 102

Бахирев Я.А.

Проверил: Корнилова Н.Г.

Воткинск

2010

1. Решить неравенство

x2 – 3x+5

x-1

Решение.

Для решения неравенств, правая часть которых – нуль, а левая – алгебраическая дробь, т.е., неравенств вида используем метод интервалов.

Обозначим f(x) x2-3x+5 и найдем область определения

x-1

D(f) функция f (x). Для этого определим нули знаменателя функции:

x-1=0, x=1, D(f)=(-; 1) (1;).

Найдем нули функции f (x). Для этого решим уравнение:

x2- 3x+5 x2-3x+5=0 (1)

x-1x-1=0 (2)

Решая уравнение (1), получим:

x2- 3x+5=0, D= (-3)2-4 1 5=9-20<0 – уравнение не имеет решений.

Функция f(x) непрерывна на множестве D (f) и не имеет нулей. Точка 1 разбивает область определения на промежутки знакопостоянства значений функции. Определим знак значения функции f (x) на каждом промежутке знакопостоянства.

Для этого достаточно определить знак значения функции в любой точке промежутка:

f(0) 02-3 0+5 f (2)= 22-3 2+5

    1. 2-1

Отметим, для наглядности, на рисунке промежутки знакопостоянства значений функции f (x) и запишем решения данного неравенства:

f (x) < 0 f (x)>0

f (x) > 0, x c (1;).

Ответ: (1;).

2. Решить неравенство

Log5(3x+1)<2

Решение.

Используя свойства логарифмов положительных чисел

loga a=1

m loga b =loga bm

преобразуем неравенство к простейшему логарифмическому неравенству вида

loga f (x) < loga g(x)

Log5(3x+1)<2, log5(3x+1)<2log55, log5(3x+1)<log552.

При a>1 функция y=loga t в области определения D(loga), задаваемой неравенством t > 0, монотонно возрастает, то есть, если t1>t2>0, то loga t1 > loga t2. Учитывая это, запишем затем, используем формулу перехода от простейшего логарифмического неравенства к двойному неравенству:

Если a > 1, то

Loga f(x) < loga g(x) 0 < f(x) < g(x)

log5(3x+1) < log552, 0 < 3x + 1 < 52, -1 < 3x < 25 - 1,

11

3 < x < 8, x с 3; 8.

1

Ответ: 3; 8.

3. Найдите все решения уравнения

sinx cosxv3cosx = 0, принадлежащие отрезку |0; 2 п|.

Решение.

Разложим на множители левую часть уравнения и, учитывая условие задачи, что x с |0; 2п|, в результате получим следующую систему:

sinx cosx – v3cosx=0, cosx(sinx-v3)=0.

|cosx=0

|sinx-v3=0

0<x<2п

Используя формулу решения простейшего тригонометрического уравнения

cosf(x)=0 f(x)=п +пn, n c Z 2

Решим уравнение (1):

cosx=0, x=п+пn, n с Z

Подставляя (4) в двойное неравенство (3), получим:

0< п +пn<2п, п <пn<2п п

222, п < пn < 3п 1 < n < 3

2 п п 2 п, 2 2.

Так как n с Z, то n=0 и n =1. Подставляя n=0 и n=1

в уравнение (4), получим:

sinx=v3 – решений нет, так как - 1<sinx<1 при любых значениях x.

Ответ: п 3п

2, 2.

4. Найдите наименьшее значение функции

f(x)=3x2-18x+7 на промежутке [-5; -1].

Решение.

Функция непрерывна и дифференцируема в каждой точке промежутка |-5; -1|.

Наименьшее (и наибольшее) значения непрерывной на отрезке функции могут достигаться либо на концах отрезка, либо в критических точках, принадлежащих этому отрезку.

Найдем производную f(x) функции f(x), используя свойства производной (теоремы о дифференцировании суммы функций и о вынесении постоянного множителя за знак производной) и формулу дифференцирования степенной функции:

(f(x) +g(x)) =f (x) + g (x)

(xm) = mxm-1

C=0

f(x)=(3x2-18x+7) =3 (x2)-18 x +7=3 2x2-1-18 x1-1 +0=6x-18.

Для нахождения критических точек составим и решим уравнение:

f(x)=0

6x-18=0, x=3 c [-5; -1].

Так как критическая точка не принадлежит отрезку [-5; -1], то вычислим значения функции f(x) только на концах отрезка [-5; -1] и из них выберем наименьшее значение:

f(x)=3x2-18x+7,

f(-5)=3 (-5)2-18 (-5)+7=75+90+7=172,

f(-1)=3 (-1)2-18 (-1)+7=3+18+7=28.

Наименьшим из вычисленных значений функции является число 28:

min f(x)=f(-1)=28.

[-5; -1]

Ответ: min f(x)=f(-1)=28.

[-5; -1]

5. Найдите все функции, которые имеют одну и ту же производную: f(x)=x+5sinx

Решение.

Найдем область определения D(f) функции f(x):

D(f)=(- ~;~).

Все функции, имеющие производную, равную f(x), называют множеством всех первообразных F(x) функции f(x) на некотором промежутке (в данном случае, на области определения D(f)=(- ~;~)) или, как это общепринято в математике, неопределенным интегралом функции f(x) на указанном промежутке и (общепринято) обозначают:

| f(x)dx=F(x)+C

Используя свойства неопределенного интеграла

|(f(x) + g(x)) dx= |f(x) dx + |g(x)dx

|af(x) dx=a|f(x)dx

и таблицу неопределённых интегралов

xm+1

| xmdx=m+1 + C, где m= -1

|sinx dx= -cosx + C

получим:

F(x)=| f(x) dx = | (x+5sinx) dx= |xdx + 5| sinx dx= 1+1 + 5 (- cosx) + C=2 -5cosx + C.

x1+1 x2

Ответ: F(x) = 2 -5cosx + C.

Похожие работы:

  • Анализ области определения функции

    Контрольная работа >> Информатика, программирование
    План Постановка задачи Анализ области определения функции Рабочий лист Excel в режиме отображения ... этом отрезке и построить график. Анализ области определения функции При х = 0 знаменатель дроби тоже равен ...
  • Функции и их производные

    Контрольная работа >> Математика
    ... производной произведения функций в) № 2 Дана функция Найти: а) координаты вектора grad u в точке А (-1,3,2) По определению: б) ... Провести полное исследование функции и начертить ее график. 1. Найдем область определения функции . Функция непериодична. 2. ...
  • Определение функций двух работников (инженера по охране ...

    Реферат >> Менеджмент
    ... Менеджмент На тему: «Определение функций двух работников (инженера по ... области, а также соседних областей, далее планируется занять лидирующее положение на челябинском рынке. 2. Функции ... Целью работы было определение функций сотрудников предприятия продуктным ...
  • Функция и ее свойства

    Доклад >> Математика
    ... х из области определения функции выполняется равенство f(x)=f(-x) Функция является нечетной- если для любого х из области определения функции выполняется ...
  • Функции

    Реферат >> Математика
    ... ни для одного из элементов области определения. Функция f: a; b; c; d  , , , , , заданная следующим образом: f(а) = , f(b) = , f(c)=, f(d) =  является инъективной ...
  • Функции нескольких переменных

    Реферат >> Математика
    ... которых определена функция , называется областью определения этой функции. Для функции двух переменных область определения представляет собой ... или несколькими линиями. Например, область определения функции – вся плоскость, а функции – единичный круг с ...
  • Хеш-функции в криптосистемах

    Реферат >> Информатика, программирование
    ... , возможно существование такого интервала на области определения функции, в границах которого она становится инъективной ... В криптовании используются особые хэш-функции, называемые односторонними. Функция : XY называется односторонней, если (x) может ...
  • Создание программы табуляции функций

    Курсовая работа >> Информатика, программирование
    ... ) со значениями в множестве Y : f : XY, y=f(x). Множество Х называется областью определения функции и обозначается Dom(f) или D(f), множество Y называется ...
  • Функции государства

    Доклад >> Право, юриспруденция
    ... государственной поддержке. Социальная функция включает в себя государственную политику в области образования, науки, культуры ... и правоохранительной. В целях обеспечения реализации определенной функции государство создает для этого необходимую ...
  • Построение графиков функций. Решение нелинейных уравнений и систем нелинейных уравнений

    Контрольная работа >> Информатика, программирование
    ... переменную x 2. Создать функцию пользователя 3. Для построения графика ... этап. Отделение корней, т.е. разбиения области определения функции f(x), на отрезки, в каждом ... – отделение корней Создать функция пользователя Создать ранжированную переменную ...