Реферат : О вариационности некоторых ДУЧП с отклоняющимися аргументами 


Полнотекстовый поиск по базе:

Главная >> Реферат >> Математика


О вариационности некоторых ДУЧП с отклоняющимися аргументами




Современные качественные исследования устойчивости

О вариационности некоторых ДУЧП

с отклоняющимися аргументами

И.А. Колесникова

Российский университет дружбы народов

117198, Россия, Москва, ул. Миклухо-Маклая, 6.

тел.: (095) 952-35-83, e-mail Vsavchin@mx.pfu.edu.ru

Исследована задача существования вариационных принципов для дифференциальных уравнений с отклоняющимися аргументами вида

1
. Постановка задачи. Пусть N – оператор, заданный в области D(N) линейного нормированного пространства U над полем действительных чисел R, а область значений R(N) принадлежит линейному нормированному пространству V над полем R, т.е.

В
дальнейшем всюду предполагается, что в каждой точке

существует производная Гато оператора N, определяемая формулой

(1)

Решается задача существования вариационных принципов для заданных ДУЧП с отклоняющимися аргументами вида

(2)

где -ограниченная область в, с кусочногладкой границей

в предположении достаточной гладкости всех рассматриваемых функций.

Зададим область определения оператора N равенством

(3)

Здесь - заданные функции, - неизвестная функция. Числа зависят соответственно от . Если - четны, то При нечетном полагаем

Обозначим

Введем классическую билинейную форму вида где (4)

Б
удем говорить, что уравнение (2) допускает прямую вариационную формулировку на множестве D(N), относительно билинейной формы (4), если существует функционал FN: D(FN )=D(N)—>R такой, что

Функционал FN называется потенциалом оператора N, а N – градиентом функционала FN. Записывают N=gradфFN. Оператор N называется потенциальным на множестве D(N) относительно Ф.

Обозначая через замыкание области , будем предполагать, что - выпуклое множество, , для любых фиксированных элементов функция

Как известно [2., стр.15], необходимым и достаточным условием потенциальности оператора N на множестве D(N) относительно заданной формы является условие симметричности



И
скомый функционал в этом случае имеет вид:

где F0 произвольный фиксированный элемент из R.

Для уравнения вида (2) устанавливается, что существует вариационный принцип в указанном выше смысле тогда и только тогда, когда справедлива

Теорема 1. Для потенциальности оператора (2) на множестве (3) относительно билинейной формы (4) необходимо и достаточно, чтобы выполнялись условия

С
овременные качественные исследования устойчивости

Доказательство теоремы может быть проведено по схеме изложенной в работе [1, стр.43].

2.Примеры.

А
.
Рассматривается дифференциальное уравнение с отклоняющимися аргументами вида (частный случай уравнения (2))

с
граничными условиями

Для решения вопроса о вариационности задачи (7),(8) воспользуемся теоремой 1. Из условий (6) получим

Отсюда заключаем, что в случае потенциальности рассматриваемого оператора коэффициенты a-1, a 0 ,a 1 могут зависеть только от x, а b-1, b0, b1только от t.

С учетом условий (9), уравнение (7) может быть записано в виде

Т
аким образом, уравнение (7’) c граничными условиями (8) допускает вариационную формулировку.

Соответствующий функционал имеет вид

В

.
Рассматривается уравнение

где a,b – const, u – неизвестная функция с граничными условиями

Для оператора задачи(10),(11) условия (6) не выполняются. В этой связи рассматривается следующая задача.

Найти функцию [2] М=М(x,t,u,ui) в Ω для любого u из D(N) и соответствующий функционал F[u] так, что

И

спользуя условия (6), находим вариационный множитель М=еu(x,t). Тогда получим, что оператор вида

я
вляется потенциальным.

Соответствующее эквивалентное уравнение будет иметь вид:



Таким образом, задача (13’), (11) допускает вариационную формулировку с функционалом



ЛИТЕРАТУРА.

[1] Савчин В.М. Условия потенциальности Гельмгольца для ДУЧП с отклоняющимися аргументами.// XXXII Научная конференция факультета физико-математических и естественных наук. Тезисы докладов.1996г.С. 25.

[2] Филиппов В.М., Савчин В.М., Шорохов С.Г., Вариационные принципы для непотенциальных операторов. Итоги науки и техники. Современные проблемы математики. Новейшие достижения. Том 40.М.1992.

4


Похожие работы: