Контрольная работа : Таблица производных. Дифференцирование сложных функций 


Полнотекстовый поиск по базе:

Главная >> Контрольная работа >> Математика


Таблица производных. Дифференцирование сложных функций




Контрольная работа

Дисциплина: Высшая математика

Тема: Таблица производных. Дифференцирование сложных функций

1. Таблица производных

Как известно, большинство функций можно представить в виде какой-то комбинации элементарных функций. Зная, как дифференцируются элементарные функции, можно продифференцировать и их различные комбинации. Поэтому рассмотрим таблицу производных элементарных функций.

1. .

Найдем производную, когда .

Зададим приращение аргументу , что даст . Так как

, а , то

Отсюда и ,

то есть . Если , результат тот же.

2. .

Зададим приращение аргументу , что даст . Так как , а , то

.

Отсюда и , то есть .

3. .

Зададим приращение аргументу , что даст . Так как , а , то

.

Отсюда и , то есть .

4. .

По определению . Будем дифференцировать как частное:

, то есть .

5. .

По определению . Будем дифференцировать как частное:

, то есть .

6. .

Зададим приращение аргументу , что даст . Так как , а , то

.

Отсюда и

,

то есть . Здесь была использована формула для второго замечательного предела.

7. .

Для вычисления производной воспользуемся предыдущей формулой, в которой положим : . Значит, .

8. .

Зададим приращение аргументу , что даст . Так как , а , то . Отсюда

и , то есть .

Здесь была использована формула для одного из следствий из второго замечательного предела.

9. .

Для вычисления производной воспользуемся предыдущей формулой, в которой положим : . Значит, .

Прежде чем перейти к вычислению производных от обратных тригонометрических функций, рассмотрим вопрос о дифференцировании обратных функций вообще. Как было сказано в п. 8.2, для каждого взаимно однозначного отображения существует обратное отображение, то есть если , то .

Теорема. Если для некоторой функции существует обратная ей , которая в точке имеет производную не равную нулю, то в точке функция имеет производную равную , то есть .

Доказательство. Рассмотрим отношение приращения функции к приращению аргумента: . Так как функция имеет производную, то согласно теореме 11.2.2 она непрерывна, то есть , откуда . Значит, .

Воспользуемся данной теоремой для вычисления производных обратных тригонометрических функций.

10. .

В данном случае обратной функцией будет . Для нее . Отсюда

,

то есть .

11. .

Так как

, то . .

В данном случае обратной функцией будет . Для нее

.

Отсюда , то есть .

13. .

Так как

, то .

2. Производная сложной функции

Пусть дана функция и при этом . Тогда исходную функцию можно представить в виде . Функции такого типа называются сложными. Например, .

В выражении аргумент называется промежуточным аргументом. Установим правило дифференцирования сложных функций, так как они охватывают практически все виды существующих функций.

Теорема. Пусть функция имеет производную в точке , а функция имеет производную в соответствующей точке . Тогда сложная функция в точке также будет иметь производную равную производной функции по промежуточному аргументу умноженной на производную промежуточного аргумента по , то есть .

Для доказательства дадим приращение аргументу , то есть от перейдем к . Это вызовет приращение промежуточного аргумента , который от перейдет к . Но это, в свою очередь, приведет к изменению , который от перейдет к . Так как согласно условию теоремы функции и имеют производные, то в соответствии с теоремой о связи дифференцируемости и непрерывности функции (теорема 11.2.2) они непрерывны. Значит, если , то и , что, в свою очередь, вызовет стремление к нулю.

Составим . Отсюда,

и, следовательно, .

Если функция имеет не один, а два промежуточных аргумента, то есть ее можно представить в виде , где , а , или , то, соответственно, и так далее.

3. Дифференцирование параметрически заданной функции

Выше были рассмотрены производные элементарных функций и указано правило дифференцирования сложных функций, составленных из элементарных. Но существуют и другие способы задания функций, которые также необходимо дифференцировать. Одним из таких способов является параметрическое задание функции, с которым мы уже сталкивались при изучении уравнения прямой линии.

При обычном задании функции уравнение связывало между собой две переменных: аргумент и функцию. Задавая , получаем значение , то есть пару чисел, являющихся координатами точки . При изменении меняется , точка начинает перемещаться и описывать некоторую линию. Однако при задании линии часто бывает удобно переменные и связывать не между собой, а выражать их через третью переменную величину.

Пусть даны две функции: где . Для каждого значения из данного промежутка будет своя пара чисел и , которой будет соответствовать точка . Пробегая все значения, заставляет меняться и , то есть точка движется и описывает некоторую кривую. Указанные уравнения называются параметрическим заданием функции, а переменная – параметром.

Если функция взаимно однозначная и имеет обратную себе, то можно найти . Подставляя в , получим , то есть обычную функцию. Указанная операция называется исключением параметра. Однако при параметрическом задании функции эту операцию не всегда делать удобно, а иногда и просто невозможно.

Так, в механике принят способ изображения траектории точки в виде изменения ее проекций по осям и в зависимости от времени , то есть в виде параметрически заданной функции Такой способ значительно удобнее при решении целого ряда задач. В трехмерном случае сюда добавляется еще и уравнение .

В качестве примера рассмотрим несколько параметрически заданных кривых.

1. Окружность.

Возьмем точку на окружности с радиусом . Выражая и через гипотенузу прямоугольного треугольника, получаем:

Это и есть уравнение окружности в параметрической форме (рис. 3.1). Возводя каждое уравнение в квадрат, отсюда легко получить обычное уравнение окружности .

Рис. 3.1

2. Эллипс.

Известно, что уравнение эллипса – . Отсюда . Возьмем две точки и на окружности и эллипсе, имеющие одинаковую абсциссу (рис. 3.2). Тогда из уравнения окружности следует, что . Подставим это выражение в : . Значит, уравнение эллипса в параметрической форме имеет вид

Рис. 3.2

3. Циклоида.

Пусть по ровной горизонтальной поверхности катится без скольжения окружность с радиусом . Зафиксируем точку O ее соприкосновения с поверхностью в начальный момент. Когда окружность повернется на угол t, точка O перейдет в точку C (рис. 3.3). Найдем ее координаты:

Значит, параметрическое уравнение циклоиды имеет вид:

Рис. 3.3

4. Астроида.

Пусть внутри окружности радиуса без скольжения катится другая окружность радиуса . Тогда точка меньшей окружности, которая в начальный момент времени была точкой соприкосновения с большей, в процессе движения опишет астроиду (рис. 3.4), параметрическое уравнение которой имеет вид:

Рис. 3.4

Рассмотрев ряд примеров, перейдем теперь к вопросу о дифференцировании параметрически заданных функций.

Пусть функция от задана параметрически: где . Пусть на этом отрезке обе функции имеют производные и при этом . Найдем .

Составим отношение . Тогда

.

Следовательно, . Это и есть правило дифференцирования параметрически заданных функций.

Литература

  1. Бугров Я.С., Никольский С.М. ВЫСШАЯ МАТЕМАТИКА В 3-х томах Т. 1 Элементы линейной алгебры и аналитической геометрии 8-е изд. Изд-во: ДРОФА, 2006. – 284с.

  2. Мироненко Е.С. Высшая математика. М: Высшая школа, 2002. – 109с.

  3. Никольский С.М., Бугров Я.С. ВЫСШАЯ МАТЕМАТИКА В 3-Х ТОМАХ Т. 2 Дифференциальное и интегральное исчисление 8-е изд. Изд-во: ДРОФА, 2007. – 509с.

  4. Черненко В.Д. Высшая математика в примерах и задачах. В трех томах. ПОЛИТЕХНИКА, 2003.

Похожие работы:

  • Производная и ее применение в алгебре, геометрии, физике

    Реферат >> Математика
    ... функции называется дифференцированием данной функции. Общее правило дифференцирования (нахождения производной) следующее: 1) найти приращение ∆y функции, т. е. разность значений функции ... * ∆u. Но так как, по определению, x'u ∆u = dx, то, ...
  • Основные правила дифференцирования

    Учебное пособие >> Математика
    ... дифференцирование применяется для нахождения производной от показательно-степенной функции. Примеры . Таблица производных Объединим в одну таблицу ... сложной функции. Пусть y=f(u), u=g(x) или y = f(g(x)). Тогда по правилу дифференцирования сложной функции: ...
  • Производная в курсе алгебры средней школы

    Реферат >> Педагогика
    ... ∆x при ∆x → 0, называется производной от функции f(x). y'(x)= 1-3. Правила дифференцирования и таблица производных C' = 0 (xn) ... производных 16. Производная сложной функции 17. Производные тригонометрических функций §5. Применение непрерывности и производной ...
  • Производная и ее применение в алгебре, геометрии, физике

    Реферат >> Математика
    ... и непрерывностью функции …..7 Производные от элементарных функций: …………………………………………8 Производная постоянной ………………………………………………………...8 Таблица элементарных производных …………………………………………...8 Правила дифференцирования …………………………………………………...8 Изучение функций ...
  • Производная, дифференциал и интеграл

    Контрольная работа >> Математика
    ... функцию и в точке производная , то обратная функция дифференцируема в точке и или . Если функция дифференцируема в точке и , то сложная функция ... основных элементарных функций получаются из формул дифференцирования этих функций. Приведем таблицу основных ...
  • Шпоры по математическому анализу

    Реферат >> Математика
    ... Применим снова правило дифференцирования сложной функции к уравнению φ(x,y)=0. ... производная функции z=f(x,y) по у. Для частной производной функции нескольких переменных, производную функции ... порядка mn называется прямоугольная таблица чисел, содержащая m ...
  • Большая коллекция шпор для МАТАНа (1 семестр 1 курс)

    Шпаргалка >> Математика
    ... . обратной функции. Таблица производных: 41. Дифференцирование сложных ф-ций: Производная сложной ф-ции = произведению производной ф-ции по промежуточному аргументу и производной самого ...
  • Исследование функций и построение их графиков

    Учебное пособие >> Математика
    ... правила дифференцирования и таблица производных элементарных функций, приводимая ниже. Таблица 2. № функция производнаяфункция производная 1 7 1/ 2 8 -1/ 3 1/ 9 1/() 4 10 -1/() 5 11 1/(1+) 6 - 12 -1/(1+) Пример 1. Найти производную функции . Решение ...
  • Высшая математика для менеджеров

    Дипломная работа >> Математика
    ... в пункт потребления дается следующей таблицей. Таблица 1 Пункт Пункт потребления производства ... = + = . Пример 3.17. Найти производную сложной функции y=, u=x4 +1. Решение. По правилу дифференцирования сложной функции, получим: y'x =y 'u u'x =()'u(x4 +1)'x ...
  • Экзаменационные билеты по математике

    Реферат >> Математика
    ... .. Правила дифференцирования суммы, разности, произведения и частного двух функций. Правило дифференцирования сложной функции. Определение ... ? Что такое таблица статистического распределения выборки? Найти производную по направлению функции в точке (1, 1) ...