Лабораторная работа : Математическая статистика (работа 4) 


Полнотекстовый поиск по базе:

Главная >> Лабораторная работа >> Математика


Математическая статистика (работа 4)




Министерство образования и науки Российской Федерации.

Федеральное агентство по образованию.

Государственное образовательное учреждение высшего профессионального

образования.

Самарский государственный технический университет.

Кафедра высшей математике

Курсовая работа

студент

руководитель: .

ассистент: Н.

Самара

2004 г.

Пусть случайные величины Х и Y принимают значение, приведённые в таблице 1.

Таблица 1

Х

Y

X

Y

X

Y

X

Y

70

60

97

62

27

25

57

35

73

60

96

85

43

25

60

34

80

55

67

34

24

19

92

85

41

30

80

80

24

20

93

75

56

25

82

78

27

19

100

65

103

92

90

80

100

90

120

115

104

92

120

92

101

110

120

90

104

114

115

115

102

112

92

75

93

62

123

115

145

118

123

112

118

115

127

120

150

118

123

100

121

92

127

117

150

119

96

72

117

92

130

120

150

120

130

119

112

110

135

125

131

120

142

119

96

78

153

125

132

142

142

140

127

120

153

142

202

175

145

144

130

125

153

135

202

173

157

150

130

140

153

145

205

202

180

180

130

119

162

172

180

202

180

200

150

140

165

165

188

225

180

175

140

120

165

150

210

220

180

190

140

125

165

146

221

225

200

200

162

170

170

152

225

220

200

175

155

170

170

165

225

230

240

228

157

160

154

170

227

232

240

232

157

165

154

165

237

232

132

140

1) Находим, что

Тогда длина интервала группирования

- число интервалов (разрядов), неформализован и зависит от объёма и степени однородности выборки. При ,

2) Находим границы величины

,

3) Находим значение представителей

- середина i-того интервала.

4) Для графического описания выборки по условиям задания необходимо построить гистограмму относительных частот (рис. 1) и эмпирическую функцию распределения (рис. 2)

а) На гистограмме относительных частот высота прямоугольников выбирается равной , основания прямоугольников соответствуют интервалам разбиения. Площадь i-того прямоугольника равна относительной частоте наблюдений, попавших в i-тый интервал.

Составляем таблицу частот группированной выборки (табл. 2), содержащую столбцы с номерами интервала i, значениями нижней границы (начала интервала) и представителя интервала , числами значений в i-том интервале , накопленной частоты , относительной частоты , накопленной относительной частоты . Число строк таблицы равно числу интервалов r.

Рис. 1. Гистограмма относительных частот

б) Эмпирическая функция распределения определяется по значениям накопленных относительных частот представителей разрядов:

Функция представляет собой кусочно-постоянную функцию, имеющие скачки в точках, соответствующих серединам интервалов группировки , причём при , и при

Рис. 2. Эмпирическая функция распределения

5) Составленную ранее таблицу частот группированной выборки (табл. 2) дополняем таблицей расчёта числовых значений и . Она содержит результаты промежуточных вычислений по формулам

6) После заполнения таблицы 2 рассчитываем значение числовых оценок:

7) Определяем коэффициент вариаций

8) Определяем границы доверительного интервала для математического ожидания по формулам

При заданной доверительной вероятности по таблицам распределения Стьюдента , поэтому имеем

9) Среднеквадратичное отклонение оценки математического ожидания случайной величины Х равно

10) По виду гистограммы выдвигаем гипотезу Н0 о подчинении случайной величины Х нормальному закону распределения. Для построения теоретической функции и составляем таблицу значений (таблица 3) нормальной величины , определяем функцию Лапласа , значения функции распределения на концах отрезков и вероятность попадания в i-тый интервал по формуле

11) Рисунок 2 с эмпирической функцией распределения дополняем теоретической функцией F(x), значения которой найдены на концах интервалов.

Рис. 3. Эмпирическая , теоретическая функция распределения.

12) Для проверки согласия выдвинутой гипотезы о о законе распределения экспериментальным данным находим вероятность попадания опытных данных в i-тый интервал от до на основе полученных значений функции на границах интервалов. На построенную раньше гистограмму наносим точки с координатами и соединяем их плавными линиями (Рис. 4). Сравнивая вид гистограммы и плотность распределения, необходимо убедиться в их адекватности, близости их характеров.

Рис. 4. Гистограмма относительных частот и теоретическая плотность вероятности .

13) При количественной оценке меры близости эмпирического и теоретического законов распределения можно использовать критерии Пирсона или Колмогорова.

а) по критерию Колмогорова:

Максимальное значение модуля разности между значениями эмпирической и теоретической функциями(см. рис. 3) наблюдается в точке, близкой к представителю . Тогда

Вычисляем величину

где r – объём выборки из представителей интервалов

, следовательно . Так как , поэтому гипотеза о нормальном распределении по критерию Колмогорова принимается как не противоречащая опытным данным.

б) Для вычисления таблицу 3 дополняем промежуточными результатами ,, . Объединяем 1,2,3 и 9,10. Тогда . Получаем, что

Для нормального закона распределения . Тогда число степеней свободы . При имеем . Поэтому гипотеза по критерию Пирсона принимается.

14) Составляем точечную диаграмму в декартовой (рис. 5) системе координат, где по оси абсцисс откладываем значение , а по оси ординат - . Пары значений представляем на диаграмме в виде точек. На диаграмму наносим сетку равноотстоящих горизонтальных и вертикальных прямых. Расстояние между двумя вертикальными прямыми выражает длину интервала по оси абсцисс, а расстояние между горизонтальными прямыми – длину интервала по оси ординат.

15) Для вычисления коэффициента корреляции составляется корреляционная таблица (таблица 4). В последние две строки заносятся промежуточные результаты для вычисления точечной оценки коэффициента корреляции

16) Находим

Следовательно, линейные приближения к регрессиям имеют вид:

На рисунке 3 представлены точечная диаграмма и линии регрессии X на Y и Y на X. Расположение точек на диаграмме и небольшое значение коэффициента корреляции указывают на слабую коррелированность случайных величин X и Y между собой.

Таблица 2

№ интервала

1

24

34,8

6

6

0,06

0,06

208,8

-99,36

9872,41

59234,46

2

45,6

56,4

4

10

0,04

0,1

225,6

-77,76

6046,618

24186,47

3

67,2

78

5

15

0,05

0,15

390

-56,16

3153,946

15769,73

4

88,8

99,6

16

31

0,16

0,31

1593,6

-34,56

1194,394

19110,3

5

110,4

121,2

21

52

0,21

0,52

2545,2

-12,96

167,9616

3527,194

6

132

142,8

15

67

0,15

0,67

2142

8,64

74,6496

1119,744

7

153,6

164,4

13

80

0,13

0,8

2137,2

30,24

914,4576

11887,95

8

175,2

186

6

86

0,06

0,86

1116

51,84

2687,386

16124,31

9

196,8

207,6

7

93

0,07

0,93

1453,2

73,44

5393,434

37754,04

10

218,4

229,2

7

100

0,07

1

1604,4

95,04

9032,602

63228,21

11

240

 

 

 

 

 

 

 

 

 

Сумма

100

1

13416

251942,4

Таблица 3

№ интервала

1

24

-2,18368

-0,4854

0,0146

0,0255

2,55

3,8025

0,224336

2

45,6

-1,75551

-0,4599

0,0401

0,0517

5,17

3

67,2

-1,32733

-0,4082

0,0918

0,0923

9,23

4

88,8

-0,89916

-0,3159

0,1841

0,1351

13,51

6,2001

0,458927

5

110,4

-0,47099

-0,1808

0,3192

0,1648

16,48

20,4304

1,239709

6

132

-0,04282

-0,016

0,484

0,164

16,4

1,96

0,119512

7

153,6

0,385355

0,148

0,648

0,143

14,3

1,69

0,118182

8

175,2

0,813527

0,291

0,791

0,1015

10,15

17,2225

1,696798

9

196,8

1,241699

0,3925

0,8925

0,06

6

25,8064

2,893094

10

218,4

1,669871

0,4525

0,9525

0,0292

2,92

11

240

2,098043

0,4817

0,9817

 

 

 

 

Пусть случайные величины Х и Y принимают значение, приведённые в таблице 1.

Таблица 1

Х

Y

X

Y

X

Y

X

Y

70

60

97

62

27

25

57

35

73

60

96

85

43

25

60

34

80

55

67

34

24

19

92

85

41

30

80

80

24

20

93

75

56

25

82

78

27

19

100

65

103

92

90

80

100

90

120

115

104

92

120

92

101

110

120

90

104

114

115

115

102

112

92

75

93

62

123

115

145

118

123

112

118

115

127

120

150

118

123

100

121

92

127

117

150

119

96

72

117

92

130

120

150

120

130

119

112

110

135

125

131

120

142

119

96

78

153

125

132

142

142

140

127

120

153

142

202

175

145

144

130

125

153

135

202

173

157

150

130

140

153

145

205

202

180

180

130

119

162

172

180

202

180

200

150

140

165

165

188

225

180

175

140

120

165

150

210

220

180

190

140

125

165

146

221

225

200

200

162

170

170

152

225

220

200

175

155

170

170

165

225

230

240

228

157

160

154

170

227

232

240

232

157

165

154

165

237

232

132

140

1) Находим, что

Тогда длина интервала группирования

- число интервалов (разрядов), неформализован и зависит от объёма и степени однородности выборки. При ,

2) Находим границы величины

,

3) Находим значение представителей

- середина j-того интервала.

4) Для графического описания выборки по условиям задания необходимо построить гистограмму относительных частот (рис. 1) и эмпирическую функцию распределения (рис. 2)

а) На гистограмме относительных частот высота прямоугольников выбирается равной , основания прямоугольников соответствуют интервалам разбиения. Площадь j-того прямоугольника равна относительной частоте наблюдений, попавших в j-тый интервал.

Составляем таблицу частот группированной выборки (табл. 2), содержащую столбцы с номерами интервала j, значениями нижней границы (начала интервала) и представителя интервала , числами значений в j-том интервале , накопленной частоты , относительной частоты , накопленной относительной частоты . Число строк таблицы равно числу интервалов r.

Рис. 1. Гистограмма относительных частот

б) Эмпирическая функция распределения определяется по значениям накопленных относительных частот представителей разрядов:

Функция представляет собой кусочно-постоянную функцию, имеющие скачки в точках, соответствующих серединам интервалов группировки , причём при , и при

Рис. 2. Эмпирическая функция распределения

5) Составленную ранее таблицу частот группированной выборки (табл. 2) дополняем таблицей расчёта числовых значений и . Она содержит результаты промежуточных вычислений по формулам

6) После заполнения таблицы 2 рассчитываем значение числовых оценок:

7) Определяем коэффициент вариаций

8) Определяем границы доверительного интервала для математического ожидания по формулам

При заданной доверительной вероятности по таблицам распределения Стьюдента , поэтому имеем

9) Среднеквадратичное отклонение оценки математического ожидания случайной величины Y равно

10) По виду гистограммы выдвигаем гипотезу Н0 о подчинении случайной величины нормальному закону распределения. Для построения теоретической функции и составляем таблицу значений (таблица 3) нормальной величины , определяем функцию Лапласа , значения функции распределения на концах отрезков и вероятность попадания в i-тый интервал по формуле

11) Рисунок 2 с эмпирической функцией распределения дополняем теоретической функцией F(y), значения которой найдены на концах интервалов.

Рис. 3. Эмпирическая , теоретическая функция распределения.

12) Для проверки согласия выдвинутой гипотезы о о законе распределения экспериментальным данным находим вероятность попадания опытных данных в j-тый интервал от до на основе полученных значений функции на границах интервалов. На построенную раньше гистограмму наносим точки с координатами и соединяем их плавными линиями (Рис. 4). Сравнивая вид гистограммы и плотность распределения, необходимо убедиться в их адекватности, близости их характеров.

Рис. 4. Гистограмма относительных частот и теоретическая плотность вероятности .

13) При количественной оценке меры близости эмпирического и теоретического законов распределения можно использовать критерии Пирсона или Колмогорова.

а) по критерию Колмогорова

Максимальное значение модуля разности между значениями эмпирической и теоретической функциями(см. рис. 2) наблюдается в точке, близкой к представителю . Тогда

Вычисляем величину

где r – объём выборки из представителей интервалов

, следовательно . Так как , поэтому гипотеза о нормальном распределении по критерию Колмогорова принимается как не противоречащая опытным данным.

б) Для вычисления таблицу 3 дополняем промежуточными результатами ,, . Объединяем 1,2,3 и 9,10. Тогда . Получаем, что

Для нормального закона распределения . Тогда число степеней свободы . При имеем . Поэтому гипотеза по критерию Пирсона принимается.

14) Составляем точечную диаграмму в декартовой системе координат, где по оси абсцисс откладываем значение , а по оси ординат - . Пары значений представляем на диаграмме в виде точек. На диаграмму наносим сетку равноотстоящих горизонтальных и вертикальных прямых. Расстояние между двумя вертикальными прямыми выражает длину интервала по оси абсцисс, а расстояние между горизонтальными прямыми – длину интервала по оси ординат.

15) Для вычисления коэффициента корреляции составляется корреляционная таблица (таблица 4). В последние две строки заносятся промежуточные результаты для вычисления точечной оценки коэффициента корреляции

16) Находим

Следовательно, линейные приближения к регрессиям имеют вид:

На рисунке 3 представлены точечная диаграмма и линии регрессии X на Y и Y на X. Расположение точек на диаграмме и небольшое значение коэффициента корреляции указывают на слабую коррелированность случайных величин X и Y между собой.

Таблица 2

№ интервала

1

19

29,65

10

10

0,1

0,1

296,5

-93,933

8823,408

88234,08

2

40,3

50,95

3

13

0,03

0,13

152,85

-72,633

5275,553

15826,66

3

61,6

72,25

10

23

0,1

0,23

722,5

-51,333

2635,077

26350,77

4

82,9

93,55

10

33

0,1

0,33

935,5

-30,033

901,9811

9019,811

5

104,2

114,85

26

59

0,26

0,59

2986,1

-8,733

76,26529

1982,898

6

125,5

136,15

10

69

0,1

0,69

1361,5

12,567

157,9295

1579,295

7

146,8

157,45

7

76

0,07

0,76

1102,15

33,867

1146,974

8028,816

8

168,1

178,75

10

86

0,1

0,86

1787,5

55,167

3043,398

30433,98

9

189,4

200,05

4

90

0,04

0,9

800,2

76,467

5847,202

23388,81

10

210,7

221,35

10

100

0,1

1

2213,5

97,767

9558,386

95583,86

11

232

 

 

 

 

 

 

 

 

 

Сумма

100

1

12358,3

300429

Таблица 3

№ интервала

1

19

-1,89849

-0,4713

0,0287

0,0368

3,68

8,4681

0,421508

2

40,3

-1,51183

-0,4345

0,0655

0,0659

6,59

3

61,6

-1,12517

-0,3686

0,1314

0,0982

9,82

4

82,9

-0,73852

-0,2704

0,2296

0,1336

13,36

11,2896

0,84503

5

104,2

-0,35186

-0,1368

0,3632

0,1488

14,88

123,6544

8,310108

6

125,5

0,034799

0,012

0,512

0,1508

15,08

25,8064

1,7113

7

146,8

0,421457

0,1628

0,6628

0,1282

12,82

33,8724

2,642153

8

168,1

0,808114

0,291

0,791

0,092

9,2

30,6916

1,6626

9

189,4

1,194772

0,383

0,883

0,0599

5,99

10

210,7

1,58143

0,4429

0,9429

0,0327

3,27

11

232

1,968087

0,4756

0,9756

Сумма

13,5927


Похожие работы:

  • Математическая статистика

    Шпаргалка >> Математика
    Математическая статистика Пространством элементарных событий называется ... и математической статистики". 2. ГММЕ - Крамер "Математические методы статистики". 3. ВДВ – Ван дер Варден "Математическая статистика". 4. БМС – Боровков "Математическая статистика". 5. ...
  • Математическая статистика

    Контрольная работа >> Математика
    Математическая статистика Типы средних величин ... общая теория статистики опирается на математическую статистику, в которой излагается математическая сторона ... сумма принятых и уволенных и т.д. Математическим ожиданием дискретной случайной величины Х называется ...
  • Математическая статистика

    Курсовая работа >> Математика
    ... наблюдений над U: –11,+1,+3,+7. Теория математической статистики предлагает следующий, т.н. биномиальный критерий проверки ... Э.(ред.) 1968* Математическая статистика вып.1,2 Бикел П., Доксам М. 1987 Таблицы математической статистики Большев Л.Н., Смирнов ...
  • Математическая статистика

    Учебное пособие >> Математика
    ... и закрепление знаний о понятиях математической статистики. Предмет и методы математической статистики Математическая статистика — наука о математических методах анализа данных, полученных ...
  • Математическая статистика

    Контрольная работа >> Математика
    ... распределения ; б) математическое ожидание ; в) дисперсию ; г) среднее квадратическое отклонение . ... – М.: Высшая школа, 2000. – 400с. 5. Гмурман В.Е. Руководство к решению задач по теории ... 2000. – 400с.
  • Теория вероятностей и математическая статистика

    Учебное пособие >> Математика
    ... «Теория вероятностей и математическая статистика» - общеобразовательная математическая дисциплина, объектом изучения ... В.Б. Теория вероятностей и математическая статистика. - М.: Высшая школа, 1991. Крамер Г. Математические методы статистики. - М.: Мир, ...
  • Методика обучения школьников основам комбинаторики, теории вероятностей и математической статистики в рамках профильной школы

    Дипломная работа >> Педагогика
    ... математической статистики. Предмет статистики. ... математическую статистику, общую теорию статистики и целый ряд отраслевых статистик (статистика промышленности, статистика финансов, статистика народонаселения и другие). Предметом математической статистики ...
  • ... элективного курса "Основы теории вероятностей и математической статистики" в классах оборонно-спортивного профиля

    Дипломная работа >> Педагогика
    ... , изучаются теорией вероятностей и математической статистикой [15]. Математическая статистика устанавливает перспективность спортсменов, условия ... быстрее: . Далее следует продолжить изучать статистику. Математическая статистика – это раздел математики, в ...
  • Экономическое планирование методами математической статистики

    Реферат >> Экономико-математическое моделирование
    ... профессиональные умения и навыки применения методов математической статистики к практическому анализу реальных физических процессов ... профессиональные умения и навыки применения методов математической статистики к практическому анализу реальных физических ...
  • Статистика населения

    Курсовая работа >> Экономика
    ... главные черты метода статистики. Статистика, как наука, опекает и сводится к математической статистике. В математике задачи ... наличия в планах отдельного предмета – математической статистики) существенно обедняет статистику. Отказ от этой попытки ...