Статья : Потоки космических лучей в максимуме кривой поглощения в атмосфере и на границе атмосферы (1957–2007) 


Полнотекстовый поиск по базе:

Главная >> Статья >> Математика


Потоки космических лучей в максимуме кривой поглощения в атмосфере и на границе атмосферы (1957–2007)




Потоки космических лучей в максимуме кривой поглощения в атмосфере и на границе атмосферы (1957–2007)

Ю.И. Стожков, Н.С. Свиржевский, Г.А. Базилевская, А.К. Свиржевская, А.Н. Квашнин, М.Б. Крайнев, В.С. Махмутов, Т.И. Клочкова , Физический институт им. П.Н. Лебедева Российской академии наук

Введение

В 50-х годах 20-го столетия академик С.Н. Вернов предложил проводить измерения потоков космических лучей в атмосфере Земли методом регулярного зондирования. Основными задачами эксперимента были исследования модуляционных эффектов галактических космических лучей, механизмов ускорения частиц во вспышечных процессах на Солнце и распространения солнечных космических лучей в межпланетной среде. В середине 1957 года С.Н. Вернов вместе с профессором А.Н. Чарахчьяном воплотил эту идею в жизнь, и с тех пор регулярные измерения потоков заряженных частиц в атмосфере полярных и средних широт проводятся вплоть до настоящего времени. За весь период измерений выпущено около 80 тысяч радиозондов.

Огромный объем экспериментальных работ по измерению космических лучей в атмосфере на высокоширотных и среднеширотных станциях был выполнен сотрудниками Физического института им. П.Н. Лебедева Российской академии наук (ФИАН) в кооперации с несколькими академическими институтами и институтами других ведомств. В их число входят Научно-исследовательский институт ядерной физики им. Д.В. Скобельцына Московского государственного университета им. М.В. Ломоносова (НИИЯФ МГУ, руководитель работ – д.ф.-м.н. Т.Н. Чарахчьян), Казахский государственный университет им. С.М. Кирова (КазГу, Алма-Ата, руководитель работ – профессор Е.В. Коломеец), Полярный геофизический институт РАН (ПГИ РАН, Апатиты, руководитель работ – д.ф.-м.н. Э.В. Вашенюк), Ереванский физический институт им. А.И. Алиханяна (ЕРФИ, руководитель работ – к.ф.-м.н. Г.А. Асатрян), Космофизическая обсерватория Института космофизических исследований и аэрономии им. Ю.Г. Шафера Сибирского отделения Российской академии наук (ИКФИА СО РАН, Тикси, руководитель работ – к.ф.-м.н. А.М. Новиков), Полярный полигон Института земного магнетизма и распространения радиоволн (теперь Институт солнечно-земной физики) Сибирского отделения РАН (ИСЗФ СО РАН, Норильск, руководитель работ – к.ф.-м.н. В.П. Карпов), Ленинградский филиал Института земного магнетизма, ионосферы и распространения радиоволн РАН (ЛО ИЗМИРАН, Воейково, руководитель работ – д.ф.-м.н. М.И. Тясто), Крымская астрофизическая обсерватория (руководитель работ – д.ф.-м.н. А.А. Степанян), Институт прикладной геофизики им. Е.К. Федорова Росгидромета (ИПГ, Москва, руководитель работ – д.ф.-м.н. Н.К. Переяслова), Университет г. Кампинас, Бразилия (руководитель работ – доктор И.М. Мартин). С 1963 года измерения космических лучей в атмосфере проводятся на российской антарктической станции Мирный при постоянной поддержке и помощи Арктического и Антарктического научно-исследовательского института Росгидромета (ААНИИ).

После распада СССР в начале 90-х годов научные исследования в России практически перестали финансироваться. Регулярные измерения космических лучей в атмосфере удалось сохранить благодаря поддержке академика А.Е. Чудакова, который убедил руководство Российской академии наук в необходимости продолжать эти работы. Большую помощь в финансировании и проведении измерений оказали и продолжают оказывать центральная дирекция Физического института им. П.Н. Лебедева, Российский фонд фундаментальных исследований, целевая программа фундаментальных исследований Президиума РАН «Нейтринная физика».

Описание эксперимента

Для регистрации космического излучения в стратосфере были разработаны специальный радиозонд, наземная приемная аппаратура и стенды для градуировки детекторов частиц и бародатчиков. Большой вклад в создание аппаратуры и проведение измерений внесли инженеры Долгопрудненской научной станции ФИАН П.Н. Агешин, В.В. Баяревич, А.Е. Голенков, А.Ф. Красоткин, В.Н. Макунин и другие. Датчиками заряженных частиц в радиозонде являются газоразрядный счетчик СТС-6 и телескоп из двух таких же счетчиков. Цилиндрический счетчик СТС-6 имеет рабочую длину 98 мм, диаметр 19 мм. Толщина стальных стенок равна 50 мг?см–2 и определяет пороговое значение энергии регистрируемых электронов Еепор = 200–300 кэВ и протонов Еpпор = 5 МэВ. Эффективность регистрации ?-квантов счетчиком меньше 1%. Телескоп содержит 7-мм алюминиевый фильтр между счетчиками, который, совместно со стенками счетчиков, определяет пороговые значения энергии электронов Еепор = 5 МэВ и протонов Еpпор = 30 МэВ. Эффективность регистрации ?-квантов телескопом равна нулю. Расстояние между центрами верхнего и нижнего счетчиков телескопа равно 26 мм. Геометрические факторы счетчика Гсч и телескопа Гтел зависят от углового распределения частиц, падающих на детекторы. Для изотропного распределения частиц в верхней полусфере Гсч = 16.4 см2 и Гтел = 17.8 см2?ср. В атмосфере близкими к изотропному являются распределения заряженных частиц в максимуме кривой поглощения и распределение первичных частиц на границе атмосферы. Более подробное описание эксперимента приводится в [1–5].

В 1960-е годы в атмосфере Земли на высоких, средних и низких широтах в северном полушарии проводились регулярные измерения потоков ?-квантов с энергией Е? ? 20 кэВ. Использовалась стандартная аппаратура, в которой детектором ?-квантов был кристалл NaJ(Tl) диаметром 20 мм и высотой 20 мм [6].

Обработка экспериментальных данных проводилась на Долгопрудненской научной станции ФИАН. Огромный труд в эту работу был вложен инженерами, техниками и лаборантами ДНС Г.В. Ястребцевой, А.Ф. Бирюковой, К.А Богатской, А.М. Истратовой, В.И. Обрываловой, Г.В. Клишиной, О.А. Шишковой, Е.Г. Плотниковой, Г.И. Плугарь и многими другими.

Таблица 1. Пункты и периоды измерений потоков космических лучей и γ-квантов в атмосфере

Пункт измерений

Географические координаты

Rc,

ГВ

Период измерений

Ст. Лопарская, ст. Оленья,

Апатиты, Мурманская область

68o 57'C; 33o03'B 67o 33C; 33o20'B

0.6

07.1957–наст. время 03.1965–12.1968 (γ)

Долгопрудный,

Московская область

55o 56'С; 37o 31'В

2.4

07.1957–наст. время 10.1964–12.1969 (γ)

Алма-Ата, Казахстан

43o 15'С; 76o 55'В

6.7

03.1962–04.1993

Обс. Мирный, Антарктида

66o 34'Ю; 92o 55'В

0.03

03.1963–наст. время

Симеиз, Крым

44o 00'С; 34o 00В

5.9

03.1958–12.1961 03.1964–04.1970 10.1964–12.1969 (γ)

Воейково,

Ленинградская область

60o 00'С; 30o 42'В

1.7

11.1964–03.1970

Норильск, Красноярский край

69o 00'С; 88o 00'В

0.6

11.1974–06.1982

Ереван, Армения

40o 10'С; 44o 30'В

7.6

01.1976–04.1989

Тикси, Якутия

71o 36'С; 128o 54'В

0.5

02.1978–09.1987

Дальнереченск,

Хабаровский край

45o 52'С; 133o 44В

7.35

08.1978–05.1982

Ст. Восток, Антарктида

78o 47'Ю; 106o87'В

0.00

01.1980–02.1980

Баренцбург, Норвегия

78o 36'С; 16o 24'В

0.06

05.1982, 03–07.1983

Кампинас, Бразилия

23o 00'Ю; 47o 08'З

10.9

01.1988–02.1991

В таблице 1 приведены некоторые характеристики пунктов регулярных измерений потоков заряженных частиц и γ - квантов в атмосфере. Измерения проводятся на широтах с различными геомагнитными порогами Rc и охватывают интервал высот от уровня земли до 30–35 км. Атмосфера Земли, кроме того, использовалась как естественный анализатор частиц по жесткости (энергии).

На уровне наблюдения x в атмосфере вклад в скорость счета детекторов определяется первичными частицами с жесткостью выше некоторой пороговой величины, называемой жесткостью атмосферного обрезания Ra, если Ra > Rc, или геомагнитным порогом Rc, если Ra < Rc. Зависимость величины Ra от атмосферного давления х была установлена по данным широтных измерений и имеет вид Ra = 4.10–2x0.8, где Ra дано в ГВ, х в г.см–2 [7].

В течение всего периода наблюдений использовались одни и те же детекторы заряженных частиц (газоразрядные счетчики СТС-6) и γ-квантов (кристалл NaJ(Tl)) и одни и те же стенды, на которых проводилась их градуировка. Благодаря этому, мы имеем однородные ряды данных, которые представлены в таблицах. Наиболее длинные ряды данных получены в измерениях в Мурманской области и на среднеширотной станции (г. Долгопрудный Московской области), которые охватывают период с июля 1957 года по настоящее время.

Рис. 1а. Зависимость скорости счета заряженных частиц N1(х) от атмосферного давления х (кривые поглощения) по данным одиночного газоразрядного счетчика. Показаны средние за месяц значения на северной полярной широте с геомагнитным порогом Rс = 0.6 ГВ (черные точки) и южной полярной широте с Rс = 0.03 ГВ (открытые кружки), а также в северном полушарии на средней широте с Rс = 2.4 ГВ (темные треугольники) и низкой широте с Rс = 6.7 ГВ (светлые квадраты). Цифрами у кривых указаны значения Rс. Среднеквадратичные ошибки данных не превышают размеров символов.

Рис. 1б. То же, что на рис. 1а, для скорости счета N2(х), измеренной телескопом.

В качестве примера на рис. 1а, б показаны среднемесячные высотные зависимости скорости счета заряженных частиц, измеренной одиночным счетчиком N1(x) и телескопом N2(x), на разных широтах в период минимума солнечной активности в июле 1987 года. Отчетливо видны максимумы значений N1m и N2m. Значения максимальных потоков космических лучей в атмосфере имеют, очевидно, минимальную статистическую ошибку и не зависят от точности определения высоты или атмосферного давления. Данные в максимуме кривой поглощения используются ниже для определения потоков первичных космических лучей на границе атмосферы. Аналогичные высотные зависимости в атмосфере имеют и потоки γ-квантов [6].

В таблицах 3–27 представлены среднемесячные значения потоков космических лучей (галактических космических лучей и вторичных заряженных частиц, образованных ими в атмосфере) по данным одиночного счетчика и телескопа в максимуме кривой поглощения (N1m и N2m и их среднеквадратичные ошибки σ1 и σ2) для пунктов и периодов времени, указанных в таблице 1. В таблицах 28–30 также приведены среднемесячные значения потоков γ-квантов Nγm с энергией Е> 20 кэВ в максимуме кривой поглощения в атмосфере для пунктов и периодов времени, указанных в таблице 1.

Вычисление потоков частиц на границе атмосферы

а) метод экстраполяции потоков частиц к границе атмосферы

Из высотных зависимостей (см. примеры на рис.1а, б) можно определить потоки заряженных частиц на границе атмосферы, где атмосферное давление х = 0. Для этого находим разность кривых поглощения, полученных на широтах с Rс = 0.6 ГВ и Rс = 2.4 ГВ при 4 < х < 85 г.см–2 и экстраполируем их к границе атмосферы.

Рис. 2а. Разность dN1(х) скоростей счета одиночного счетчика на высокой (Rс = 0.6 ГВ) и средней широте (Rс = 2.4 ГВ) в северном полушарии в зависимости от атмосферного давления х. Показаны утроенные стандартные ошибки экспериментальных точек 3σ.

Рис. 2б. То же, что на рис. 2а, для разности dN2(х) скоростей счета телескопа на широтах с Rс = 0.6 ГВ и Rс = 2.4 ГВ в северном полушарии.

В качестве примера на рис. 2а, б показаны высотные зависимости разности потоков частиц dN1m(x) и dN2m(x) в минимуме солнечной активности и указан интервал энергий первичных протонов, к которому эти разности относятся. Приведены также выражения для аппроксимации величин dN1m(x) и dN2m(x), рассчитанные по методу наименьших квадратов, и значения коэффициентов корреляции r между экспериментальными точками и аппроксимацией. Разности кривых поглощения в интервале энергий 0.1 ? E ? 1.5 ГэВ удается аппроксимировать экспоненциальным законом (сплошная линия).

Рис. 3а. Разность скоростей счета dN1(х) одиночного счетчика на высокой широте (Rс = 0.6 ГВ) и на низкой широте (Rс = 6.7 ГВ) в северном полушарии в зависимости от х. Показаны утроенные стандартные отклонения 3σ.

Рис. 3б. То же, что на рис. 3а, для разности dN2(х) скоростей счета телескопа на широтах с Rс = 0.6 ГВ и Rс = 6.7 ГВ в северном полушарии.

Аналогичные разности высотных кривых, полученных на широтах с Rс = 0.6 ГВ и Rс = 6.7 ГВ, приведены на рис 3а, б.

В этом случае интервал энергии первичных протонов составляет 0.1 < E < 5.8 ГэВ. Величины dN1m(x) и dN2m(x) можно аппроксимировать линейным законом.

Полученные экстраполяцией потоки заряженных частиц при х = 0 включают первичные космические лучи J0 и частицы альбедо JА. Вычитая из потоков заряженных частиц потоки частиц альбедо JА, можно получить потоки первичных космических лучей J0 на границе атмосферы. Величины потоков альбедных частиц JA представлены в [8, 9]. При вычислениях предполагалось, что первичные космические лучи распределены в верхней полусфере изотропно, а геометрические факторы одиночного счетчика и телескопа равны, соответственно, 16.4 см2 и 17.8 см2.ср. Среднемесячные значения потоков первичных частиц на границе атмосферы J0(Е > 0.1 ГэВ) и J0(0.1 < Е < 1.5 ГэВ) даны в таблицах 31–32.

б) связь между потоками частиц на границе атмосферы и потоками в максимуме кривой поглощения

Отметим тот факт, что коэффициент корреляции r между относящимися к минимуму солнечной активности величинами dN1(х), dN2(х) и их аппроксимацией близок к 1 (рис. 2а, б и 3а, б). Это свидетельствует о том, что такая аппроксимация данных оправдана. Однако высокие значения r получаются не для всех периодов наблюдений. В периоды, близкие к максимумам солнечной активности, широтный эффект в атмосфере существенно уменьшается, соответственно уменьшаются разности потоков частиц dN1(х) и dN2(х), и их ошибки становятся сравнимыми с ошибками наблюдений. Особенно это заметно на разностях, полученных по измерениям на высоких и средних широтах. В эти периоды метод экстраполяции становится неточным. Кроме того, потоки космических лучей N1(х), полученные на высоких широтах с помощью одиночного счетчика, могут содержать небольшой вклад от высыпающихся частиц солнечного или магнитосферного происхождения.

Поэтому для нахождения потоков первичных частиц J0(Е > 0.1 ГэВ) и J0(0.1 < Е < 1.5 ГэВ) на границе атмосферы мы используем еще один метод, основанный на связи величин J0 с потоками частиц Nm в максимумах кривых поглощения. Как уже говорилось, величины Nm имеют минимальную статистическую погрешность и не зависят от неточности в определении атмосферного давления х. Мы используем значения Nm, полученные на станциях с геомагнитными порогами Rс, равными 0.6, 2.4 и 6.7 ГВ. Атмосферное давление хm, при котором регистрируется максимальный поток частиц, зависит от геомагнитного порога станции и от фазы 11-летнего солнечного цикла. В таблице 2 приведены значения хm и Еmin в минимуме и максимуме солнечной активности для указанных выше геомагнитных порогов. Под Еmin понимается пороговое значение энергии первичных протонов, начиная с которого они дают вклад в потоки частиц на глубине хm в атмосфере. Значения Emin для атмосферного давления xm получены из соотношения , где R = Ra = 4.10–2 при Ra > Rc и R = Rc при Ra < Rc, mp – масса протона, xm – атмосферное давление в г.см–2 xm 0.8 [7].

Таблица 2. Значения хm и Еmin (для протонов, по данным одиночного счетчика) для пунктов наблюдений с геомагнитными порогами Rc, равными 0.6, 2.4 и 6.7 ГВ, в периоды минимума и максимума солнечной активности

Rc, ГВ (Ec, ГэВ)

0.6 (0.18)

2.4 (1.6)

6.7 (5.8)

Минимум солнечной активности

хm, г.см–2

30

50

80

Еmin, ГэВ

0.18

1.6*

5.8*

Максимум солнечной активности

хm, гсм–2

60

60

85

Еmin, ГэВ

0.5

1.6*

5.8*

* – значения Еmin определяются величиной порога геомагнитного обрезания Rc.

Из таблицы 2 видно, что для величин Nm значения Еmin определяются атмосферным обрезанием только в области полярных широт в максимуме солнечной активности. На средних и низких широтах минимальные значения энергий первичных частиц на границе атмосферы Еmin определяются величиной геомагнитного порога Rc.

Рис. 4а. Корреляционная связь между среднемесячными значениями первичных потоков космических лучей J0(0.1 > Е > 1.5 ГэВ), полученными методом экстраполяции за период 07.1957–06.2004, и разностями потоков частиц dN1m по данным одиночного счетчика в максимуме высотных кривых в атмосфере на широтах с Rс = 0.6 и 2.4 ГВ. Прямая линия проведена методом наименьших квадратов.

Рис. 4б. То же, что на рис. 4а, для разностей dN2m потоков космических лучей в максимумах высотных кривых в атмосфере, полученных с помощью телескопа, на широтах с Rс = 0.6 и 2.4 ГВ за период 01.1960–12.2004.

На рис. 4а, б показана зависимость между значениями первичных потоков космических лучей J0(0.1 > Е > 1.5 ГэВ), полученных методом экстраполяции, и разностями потоков частиц dN1m = N1m(0.6) – N1m(2.4) по данным одиночного счетчика и dN2m = N2m(0.6) – N2m(2.4) по данным телескопа в максимуме их высотных кривых. Соотношение между J0 и dN1m для одиночного счетчика имеет высокий коэффициент корреляции r = 0.95 и может быть представлено в виде:

J0(0.1 < E < 1.5 ГэВ) = (2773 ± 25)?dN1m + (154± 9), (1)

где [J0] = м–2.с–1.ср–1 и [dN1m] = см–2.с–1.

Для счетчикового телескопа (рис.4б) коэффициент корреляции r равен 0.93, а связь между J0 и dN2m имеет вид:

J0(0.1 < E < 1.5 ГэВ) = (19715 ± 239)?dN2m + (216± 11), (2) где [J0] = м–2.с–1.ср–1 и [dN2m]= см–2.с–1.ср–1.

Вклад частиц альбедо в величину J0, найденную по данным телескопа, незначителен. В максимуме кривых поглощения в атмосфере так же, как и на ее границе частицы распределены изотропно в верхней полусфере [3] и геометрический фактор телескопа равен Гтел = 17.8 cм2.ср.

Рис. 5а. Корреляционная связь между значениями первичных потоков космических лучей J0(Е > 0.1 ГэВ), полученными методом экстраполяции за период 07.1957–12.2004, и потоками частиц N1m, регистрируемыми одиночными счетчиками в максимумах высотных кривых в атмосфере на широте с Rc = 0.6 ГВ. Прямая линия проведена методом наименьших квадратов.

Рис. 5б. То же, что на рис. 5а, для данных, полученных с помощью телескопа на широте с Rc = 0.6 ГВ за период 01.1960–12.2004.

Аналогичные корреляционные связи между экстраполированными значениями интегральных потоков по энергии J0(Е > 0.1 ГэВ) и величинами потоков космических лучей N1m и N2m в максимумах высотных кривых можно найти для полярных широт (Rc = 0.6 ГВ). Эти связи показаны на рис. 5а, б. Для данных, полученных с помощью одиночного счетчика, коэффициент корреляции r равен 0.99, и связь между J0 и N1m имеет вид:

J0(E > 0.1 ГэВ) = (1893 ± 12)?N1m – (2778 ± 32), (3) где [J0] =м–2.с–1.ср–1 и [N1m]= cм–2.ср–1. Для данных, полученных с помощью телескопа, коэффициент корреляции r = 0.98, и связь между J0 и N2m имеет вид:

J0(E > 0.1 ГэВ) = (13051 ± 98)?N2m – (2698 ± 39), (4)

где [J0] = м–2.с–1.ср–1 и [N2m]= cм–2.с–1.ср–1.

Значения J0(0.1 < E < 1.5 ГэВ) и J0(E > 0.1 ГэВ), полученные методом экстраполяции данных одиночного счетчика и телескопа к границе атмосферы, должны в пределах ошибок совпадать со значениями, полученными из соотношений (1)–(4).

В таблицах 3–27 приведены среднемесячные значения потоков заряженных частиц, измеренных в максимумах кривых поглощения космических лучей в атмосфере, для станций и периодов наблюдений, указанных в таблице 1, в таблицах 3–15 приводятся значения потоков по данным одиночных счетчиков, в таблицах 16–27 представлены потоки по данным телескопов. В таблицах 28–30 приведены среднемесячные значения потоков γ-квантов, измеренные кристаллом NaJ(Tl).

В таблицах 31–32 представлены среднемесячные значения потоков первичных космических лучей на границе атмосферы J0 для частиц с энергией Е ? 0.1 ГэВ и в интервале энергии 0.1 ? Е ? 1.5 ГэВ. Значения J0 получены двумя способами: 1) экстраполяцией к границе атмосферы данных одиночного счетчика и телескопа и 2) вычислением J0 по формулам (1)–(4) c использованием величины потоков частиц в максимумах кривых поглощения в атмосфере. В таблицах 31–32 даны усредненные значения J0. Настоящий препринт и экспериментальные данные (dct nf, kbws) также находятся на сайте http://sites.lebedev.ru/DNS_FIAN/.

Список литературы

1. Чарахчьян А.Н. Исследование флуктуаций интенсивности космических лучей в стратосфере, вызываемых процессами на Солнце. УФН, 1964, т. 83, вып. 1, с. 35-62.

2. Чарахчьян А.Н., Базилевская Г.А., Стожков Ю.И., Чарахчьян Т.Н. Космические лучи в стратосфере и околоземном пространстве в период 19-го и 20-го циклов солнечной активности. Труды ФИАН, М.: Наука, 1976, т. 88, с. 3-50.

3. Голенков А.Е., Охлопков В.П., Свиржевская А.К., Свиржевский Н.С., Стожков Ю.И. Планетарное распределение интенсивности космических лучей по измерениям в стратосфере. Труды ФИАН, М.: Наука, 1980, т. 122, с. 3-14.

4. Bazilevskaya G.A., Krainev M.B., Stozhkov Yu.I., Svirzhevskaya A.K., Svirzhevsky N.S. Long-term Soviet program for the measurement of ionizing radiation in the atmosphere. Journal of Geomagnetism and Geoelectricity, 1991, v. 43, Suppl., p. 893-900.

5. Стожков Ю.И., Свиржевский Н.С., Базилевская Г.А., Махмутов В.С., Свиржевская А.К. Исследования космических лучей в атмосфере Арктики и Антарктики. Арктика и Антарктика. М.: Наука, 2004, вып. 3 (37), с. 114-148.

6. Чарахчьян А.Н., Базилевская Г.А., Квашнин А.Н., Чарахчьян Т.Н. Фотонная компонента космических лучей в атмосфере. Труды ФИАН, М.: Наука, 1976, т. 88, с. 51-79.

7. Stozhkov Y.I., Svirzhevsky N.S., Makhmutov V.S., Svirzhevskaya A.K. Long-term cosmic ray observations in the atmosphere. Proc. 27th ICRC, Hamburg, Germany, 2001. Hamburg: Copernicus Gesellshaft, 2001, v. SH, p. 3883-3886.

8. Чарахчьян А.Н., Базилевская Г.А., Стожков Ю.И., Чарахчьян Т.Н. Альбедо космических лучей в околоземном пространстве. Геомагнетизм и аэрономия, 1974, т. 14, № 3, с. 411-416.

9.Голенков А.Е., Охлопков В.П., Свиржевская А.К., Свиржевский Н.С., Стожков Ю.И. Альбедо космических лучей по измерениям в стратосфере. Изв. АН СССР, сер. физ., 1978, т. 42, № 5, с. 997-1006.

Для подготовки данной работы были использованы материалы с сайта http://www.kosmofizika.ru

Похожие работы:

  • Химия, элементы таблицы Менделеева

    Реферат >> Химия
    ... - Зоммерфельда отве­чают максимумы кривой. Однако значительная плотность ... . Максимум их поглощения приходится на инфракрасные лучи. ... молекулярным в космическом пространстве. Соединение ... состояния атмосферы. Верхняя граница того ... усиленным потоком воздуха удаётся ...
  • Перипетии жизни

    Реферат >> Наука и техника
    ... аномалия, Кривой Рог. ... поглощения полагается работать в противоположном направлении и приводить в конечном счете к похолоданию, к большей сухости атмосферы ... мощный поток космических лучей обрушивался на ... период максимума трансгрессии океана (на границе юры ...
  • Влияние космической погоды на планету Земля

    Реферат >> Авиация и космонавтика
    ... границ естественной ... отражению, поглощению, искажению ... на кривой солнечной ... на эпохи максимумов, а остальные – то на максимумы, то на ... атмосфере, и оказывает воздействие или на атмосферу, или непосредственно на ... космические лучи), так и низких и средних (потоки ...
  • Разработка алгоритмов контроля и диагностики системы управления ориентацией космического аппарата

    Реферат >> Авиация и космонавтика
    ... космического аппарата………... Моменты, действующие на космический аппарат………...……….. Аэродинамический момент……………………………………. Аппроксимация стандартной атмосферы ... методикой границы указанных областей описываются уравнениями: - кривые CE, CF: - кривая CD: На ...
  • Межпредметные связи в курсе школьного предмета химии на предмете углерода и его соединений

    Реферат >> Химия
    ... кривые – расчет по уравнениям (3) – кривая 1, 20°C и (4) кривая ... потоки углерода между атмосферой ... атмосфере установится равновесие между углекислым газом, не пропускающим поступающие на Землю лучи ... на реке Дунай на границе ... максимум ... космического ... на поглощение ...
  • Билеты по астрономии, 11 класс

    Шпаргалка >> Математика
    ... поглощения (точнее, по наличию определенных линий в спектре) можно судить о химическом составе атмосферы ... есть кривая второго ... длину волны, на которую приходится максимум излучения:  ... критическую границу. Эти ... и пронизано потоками космических лучей. Наша ...
  • Физическая география

    Шпаргалка >> География
    ... «на верхней границе атмосферы» или «в отсутствии атмосферы») называют солнечной На освещенное полушарие Земли на верхней границе атмосферы ... этой кривой характеризует максимум, низшая — минимум температуры (рис. 5.2). Максимальные температуры на поверхности ...
  • Концепции современного естествознания

    Реферат >> Естествознание
    ... с поглощением света. На основе ... максимума активности наиболее эффективно воздействуют на атмосферу и магнитосферу Земли потоки ... атмосфере зависит от потока частиц высоких энергий, известных как галактические космические лучи ... к границам земной атмосферы и ...
  • Оптико-электронные системы

    Реферат >> Радиоэлектроника
    ... кривой видности человеческого глаза, максимум ... на космических аппаратах ... лучом, сканирование световым лучом ... на неоднородностях атмосферы и развит В.И.Татарским. При этом, в общем случае учета турбулентного воздействия на поток ... границу ~5 мкм (далее поглощение ...
  • Безопасность жизнедеятельности

    Учебное пособие >> Безопасность жизнедеятельности
    ... максимум энергии приходится на инфракрасные лучи (λEmax > 0,78 мкм). Инфракрасные лучи оказывают на ... по кривой распределения светового потока ... атмосфере, тем меньше доля отраженной солнечной радиации уходит в космическое ... реакциями на границе «вещество ...