Доклад : Векторы (работа 1) 


Полнотекстовый поиск по базе:

Главная >> Доклад >> Математика


Векторы (работа 1)




Векторы

Упорядоченную совокупность ( x1, x2, ... , xn ) n вещественных чисел называют n-мерным вектором, а числа xi ( i = ) - компонентами, или координатами, вектора.

Если, например, некоторый автомобильный завод должен выпустить в смену 50 легковых автомобилей, 100 грузовых, 10 автобусов, 50 комплектов запчастей для легковых автомобилей и 150 комплектов для грузовых автомобилей и автобусов, то производственную программу этого завода можно записать в виде вектора (50, 100, 10, 50, 150), имеющего пять компонент. Векторы обозначают жирными строчными буквами или буквами с чертой или стрелкой наверху. Два вектора называются равными, если они имеют одинаковое число компонент и их соответствующие компоненты равны.

Компоненты вектора нельзя менять местами, например, (3, 2, 5, 0, 1) ≠ (2, 3, 5, 0, 1).

Произведением вектора x = (x1, x2 , ... ,xn) на действительное число λ называется вектор x = ( λx1, λx2, ... , λxn).

Суммой векторов x = (x1, x2, ... ,xn) и y = (y1, y2 , ... ,yn) называется вектор
x + y = (x1 + y1, x2 + y2, ... , xn + yn).

N-мерное векторное пространство Rn определяется как множество всех n-мерных векторов, для которых определены операции умножения на действительные числа и сложение.

Экономическая иллюстрация n-мерного векторного пространства: пространство благ (товаров). Под товаром мы будем понимать некоторое благо или услугу, поступившие в продажу в определенное время в определенном месте. Предположим, что существует конечное число наличных товаров n; количества каждого из них, приобретенные потребителем, характеризуются набором товаров

x = (x1, x2, ..., xn),

где через xi обозначается количество i-го блага, приобретенного потребителем. Будем считать, что все товары обладают свойством произвольной делимости, так что может быть куплено любое неотрицательное количество каждого из них. Тогда все возможные наборы товаров являются векторами пространства товаров
C = { x = (x1, x2, ... , xn)| xi ≥ 0, i = }.

Система e1, e2, ... , em n-мерных векторов называется линейно зависимой, если найдутся такие числа λ1, λ2, ... , λm, из которых хотя бы одно отлично от нуля, что выполняется равенство λ1e1 + λ2e2 + ... + λmem = 0;

в противном случае данная система векторов называется линейно независимой, то есть указанное равенство возможно лишь в случае, когда все λ1 = λ2 = ... = λm = 0. Геометрический смысл линейной зависимости векторов в R3, интерпретируемых как направленные отрезки, поясняют следующие теоремы.

Теорема 1. Система, состоящая из одного вектора, линейно зависима тогда и только тогда, когда этот вектор нулевой.

Теорема 2. Для того, чтобы два вектора были линейно зависимы, необходимо и достаточно, чтобы они были коллинеарны.

Теорема 3. Для того, чтобы три вектора были линейно зависимы, необходимо и достаточно, чтобы они были компланарны.

Тройка некомпланарных векторов a, b, c называется правой, если наблюдателю из их общего начала обход концов векторов a, b, c в указанном порядке кажется совершающимся по часовой стрелке. B противном случае a, b, c - левая тройка. Все правые (или левые) тройки векторов называются одинаково ориентированными.

Тройка e1, e2, e3 некомпланарных векторов в R3 называется базисом, а сами векторы e1, e2, e3 - базисными. Любой вектор a может быть единственным образом разложен по базисным векторам, то есть представлен в виде

а = x1 e1 + x2 e2 + x3 e3, (1.1)

числа x1, x2, x3 в разложении (1.1) называются координатами вектора a в базисе e1, e2, e3 и обозначаются a(x1, x2, x3). Если векторы e1, e2, e3 попарно перпендикулярны и длина каждого из них равна единице, то базис называется ортонормированным, а координаты x1, x2, x3 - прямоугольными. Базисные векторы ортонормированного базиса будем обозначать i, j, k.

Будем предполагать, что в пространстве R3 выбрана правая система декартовых прямоугольных координат {0, i, j, k}.

Векторным произведением вектора а на вектор b называется вектор c, который определяется следующими тремя условиями:

1. Длина вектора c численно равна площади параллелограмма, построенного на векторах a и b, т. е. |c| = |a||b| sin (a^b).

2. Вектор c перпендикулярен к каждому из векторов a и b.

3. Векторы a, b и c, взятые в указанном порядке, образуют правую тройку.

Для векторного произведения c вводится обозначение c = [ab] или c = a x b.

Если векторы a и b коллинеарны, то sin(a^b) = 0 и [ab] = 0, в частности, [aa] = 0. Векторные произведения ортов: [ij] = k, [jk] = i, [ki] = j.

Если векторы a и b заданы в базисе i, j, k координатами a(a1, a2, a3), b(b1, b2, b3), то

Если векторное произведение двух векторов а и b скалярно умножается на третий вектор c, то такое произведение трех векторов называется смешанным произведением и обозначается символом a b c.

Если векторы a, b и c в базисе i, j, k заданы своими координатами a(a1, a2, a3),
b(b1, b2, b3), c(c1, c2, c3), то

Смешанное произведение имеет простое геометрическое толкование - это скаляр, по абсолютной величине равный объему параллелепипеда, построенного на трех данных векторах.

Если векторы образуют правую тройку, то их смешанное произведение есть число положительное, равное указанному объему; если же тройка

a, b, c - левая, то abc < 0 и V = - abc, следовательно V = |abc| .

Координаты векторов, встречающиеся в задачах первой главы, предполагаются заданными относительно правого ортонормированного базиса. Единичный вектор, сонаправленный вектору а, обозначается символом а0. Символом r=ОМ обозначается радиус-вектор точки М, символами а, АВ или |а| , |АВ| обозначаются модули векторов а и АВ.

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://www.mathematica.ru

Похожие работы:

  • Вектор переривань та процедура обслуговування переривань

    Реферат >> Иностранный язык
    ... вектор з номером 0 (вектор типу 0) розташовується починаючи з адреси 0, вектор типу 1−з адреси 4, вектор типу 2− з адреси 8 і т.д. Вектор ... переривань. Велика частина векторів переривань зарезервована для ... завантаженні системи. Вектори з наступними номерами ...
  • Метод векторів та його застосування

    Курсовая работа >> Математика
    ... , який зображає цей вектор. Модуль вектора позначають , а вектора АB – . Вектор, початок якого збіга ... , який сполучає початок вектора з кінцем вектора при умові, що вектор відкладено від кінця вектора . З цього правила випливає ...
  • Теория вектора

    Реферат >> Математика
    1 Теория вектора Содержание: 1. Что такое вектор? 2. Сложение векторов. 3. Равенство векторов. 4. Скалярное произведение двух векторов и его свойства ...
  • Геометрические векторы

    Реферат >> Математика
    ... 3. Произведением вектора на число называется вектор , определенный следующими условиями: 1) ; 2) вектор коллинеарен вектору ; 3) векторы и направлены одинаково ...
  • Лінійна залежність n–мірних векторів. Програма

    Курсовая работа >> Информатика, программирование
    ... вектори . Тому вектор лежить в одній площині з векторами , тобто вектори - компланарні. Припущення 7 Чотири вектори ... і: Якщо система векторів містить нульовий вектор, то вона ... 11;-6;5) Вихідні дані: - Задані вектори лінійно залежні. Висновки В даній курсов ...
  • Власні значення і власні вектори матриці

    Курсовая работа >> Математика
    ... . Виберемо початковий вектор Користуючись формулами (7), визначимо координати векторів . Маємо ... знаходження коефіцієнтів . Розкладаючи вектор y(0) по власних векторах, матимемо: (2) де — деяк ... лінійна комбінація векторів дає власний вектор х(і) з точністю ...
  • Случайные вектора

    Реферат >> Математика
    ... ). Целесообразно начать изучение случайных векторов с рассмотрения двухмерных векторов, свойства которых сравнительно простые ... аргументу. Плотность вероятности случайного вектора Пусть случайный вектор имеет функцию распределения вероятностей ...
  • Собственные вектора и собственные значения линейного оператора

    Реферат >> Математика
    ... собственным вектором, соответствующим собственному значению λ = 1. Любой вектор, параллельный красному вектору, также ... означает, что 1=2=. Ортогональность собственных векторов Собственные векторы симметричного линейного оператора, соответствующие различным ...
  • Інваріантні підпростори. Власні вектори і власні значення лінійного оператора

    Учебное пособие >> Математика
    ... ідає власний вектор . Властивості власних векторів. Якщо – власний вектор лінійного оператора ... і звідси тобто вектори базису є власними векторами оператора з власними значеннями ... довели теорему: Якщо вектори базису є власними векторами лінійного оператора , ...
  • Управление продажами на примере предприятия ООО "Вектор"

    Контрольная работа >> Менеджмент
    ... коллективной и индивидуальной защиты. Специалисты ООО «Вектор» регулярно принимают участие в международных конференциях ... . – 457 с. Ефимова Н.Ф., Маховикова Г.А. Финансовый менеджмент. - М.: Вектор, 2008. – 325 с. Ефимова О.В. Финансовый анализ ...