Реферат : Великие математики 


Полнотекстовый поиск по базе:

Главная >> Реферат >> Исторические личности


Великие математики




Блез Паскаль (1623-1662)

Блез Паскаль был сыном Этьена Паскаля, корреспон-

дента Мерсенна. Блез быстро развивался под присмотром своего отца, и уже в шестнадцатилетнем возрасте он открыл

“теорему Паскаля” о шестиугольнике, вписанном в кони-

ческое сечение. Эта теорема была опубликована 1691 г. на

одном листке бумаги и повлияла на Дезагра.Через несколь-

ко лет Паскаль изобрел счетную машину. Когда ему было двадцать пять лет, он решил поселиться как янсенист в монастыре Порт-Рояль и вести жизнь аскета, но продолжал при этом уделять время науке и литературе.

Леонард Эйлер (1707-1783)

Самый плодовитый математик восемнадцатого столетия, если только не всех времен, - Леонард Эйлер. Его отец изу-

чал математику под руководством Якоба Бернули, а Лео-

нард под руководством Иоганна. Когда в 1725 г. сын Иоганна Николай уехал в Петербург, молодой Эйлер пос-

ледовал за ним и основался в Петербургской академии до 1741 г. С 1741 по 1766 г. Эйлер находился в Берлинской академии под особым покровительством Фридриха II, а с 1766 до 1783 г. он снова в Петербурге, теперь уже под эги-

дой императрицы Екатерины. Он был дважды женат и имел тринадцать детей. Жизнь этого академика была почти целиком посвящена работе в различных областях чистой и прикладной математики. Хотя он потерял в 1735 г. один глаз, а в 1766 г. – второй, ничто не смогло ослабить его про-

дуктивность. В течении его жизни увидели свет 530 книг и статей; умирая он оставил много рукописей, которые Петер-

бургская академия опубликовала в течении 47 лет. Это довело число его работ до 886.

Исаак Ньютон (1642-1727)

Исаак Ньютон был сыном землевладельца в Линкольн-

шире. Он учился в Кембридже, возможно, что у Исаака Барроу, который в 1669 г. передал ему свою профессор-

скую кафедру (примечательное явление в академической жизни), так как Барроу открыто признал превосходство Ньютона. Ньютон оставался в Кембридже до 1696 г.,

когда он занял пост инспектора, а позже начальника монетного двора. Его исключительный авторитет в первую очередь основан на его “Математических принципах натуральной философии”, огромном томе, содержащем ак-

сеоматическое построение механики и закон тяготения -

закон управляющий падением яблока на землю и движени-

ем Луны вокруг Земли.

Эварист Галуа (1811-1832)

Парижская среда с ее напряженной математической деятельностью породила, около 1830 г. гения первой вели-

чины, которой подобно комете исчез также внезапно, как и

появился. Эварист Галуа, сын мера маленького городка вблизи Парижа, дважды не был принят в Политехническую

школу и лишь затем он поступил в Нормальную школу, но был оттуда уволен. Он старался просуществовать, обучая математике и одновременно стараясь как-нибудь совмес- тить свою страстную любовь к науке и приверженность к демократическим идеям. Галуа как республиканец участ-

вовал в революции 1830 г., несколько месяцев провел в тюрьме и вскоре после этого, двадцати одного года от роду, был убит на дуэли. Две статьи, которые он послал в печать, пропали в редакторских ящиках, несколько других статей были напечатаны спустя много лет. Перед дуэлью он напи-

сал одному из друзей резюме своих открытий и попросил

о его открытиях сообщить ведущим математикам.

Готфрид Вильгельм Лейбниц (1646-1716)

Готфрид Вильгельм Лейбниц родился в Лейпциге, а боль-

шую часть жизни провел при ганноверском дворе, на служ-

бе у герцогов, одним из которых стал английским королем

под именем Георга I. . Лейбниц был еще более правоверным

христианином, чем другие мыслители его столетия. Кроме философии, он занимался историей, тео­логией, линг-

вистикой, биологией, геологией, математикой, дипломатией и «искусством изобретения». Одним из пер­вых после Паскаля он изобрел счетную машину, пришел к идее парового двигателя, интересовался китайской фи­лософией и старался содействовать объединению Герма­нии. Основной движущей пружиной его жизни были по­иски всеобщего метода для овладения наукой, создания изобретений и понимания сущности единства вселенной. «Общая наука» которую он пытал­ся построить, имела много аспектов, и некоторые из них привели Лейбница к математическим открытиям. Его поиски «всеобщей характеристики» привели его к заня­тиям перестановками, сочетаниями и к символической логике.

Франсуа Виет (1504-1604)

Родился в Фонтене-лс-Конт, Париж. Французский математик. По профессии юрист. Ему при­надлежит установление единообразного приёма решения уравнений 2-й, 3-й и 4-н сте­пеней. Среди открытий сам В. особенно высоко ценил установление зависимости между корнями и коэффициентами урав­нений. Виет предложил метод, сходный с поздней­шим методом Ньютона. В тригономет­рии Виет дал полное решение задачи об оп­ределении всех элементов плоского или сферич. треугольника по трем данным. Впервые рассмотрел бесконечные произведения. Сочинения были написаны трудным языком и поэтому получили меньшее распростране­ние, чем заслуживали

Николай Иванович Лобачевский (1792-1825)

Вся жизнь Николая Ивановича Лобачевского была отдана науке и его родному Казанскому университету, который он окончил в 1811 г., где стал профессором (в 1816 г.), был деканом и в течение двадца­ти лет ректором. С самого начала своей научной работы он занимался вопросами обоснования анализа и аксиомати­кой геометрии. Получилась новая геометрическая система, "о которой, как уже упо­миналось, Лобачевский впервые и первый сообщил 11 (23) февраля 1826 г. в Казанском университете. Как Эйлер, Лобачевский под конец жизни почти ослеп, и свою последнюю работу по открытой им геометрии он продик­товал («Пангеометрия», 1855).

Бонавентура Кавальери (1598-1647)

Родился в Болонье. Итальянский математик. Монах ордена иеронимитов. С 1629 по рекомендации Г. Галилея занимал кафедру математики в Болонском университетете. В труде «Геометрия» (1635) Ковальери развил новый метод определе­ния площадей и объёмов. Ввёл понятие «суммы всех» неде­лимых, проведённых внутри контура фигуры. Отношение двух «сумм всех» неделимых явилось зародышевой формой отношения двух определённых интегра­лов. Труды Ковальери сыграли большую роль в формировании исчисления бесконечно малых.

Пафнутий Львович Чебышев (1821—1894)

Во главе русской математики середины и второй половины девятнадцатого столетия стоял Пафнутий Льво­вич Чебышев. Чебышев был воспитанником Московского университета, который он окончил в 1841 г. и где он защитил магистерскую диссертацию «Опыт эле­ментарного анализа теории вероятностей» из области, ко­торая стала одним из основных предметов его исследова­ний.

Все начинания Чебышев поддерживал своим авто­ритетом, но организационного участия в них не прини­мал, так как в 1847 г. переехал в Петербург, где работал до своей кончины. Тридцать пять лет Чебышев читал лек­ции в Петербургском университете, с 1853 г. он был чле­ном Академии наук. Его преподавательская деятельность была исключительно плодотворной.

Георг Кантор (1845-1918)

Родился в Петербурге. Немецкий математик. В 1867 окончил Берлинский университет. Кантор разработал теорию бесконечных мно­жеств и теорию трансфинитных чисел. В 1874 он доказал несчётность множества всех дейст-вительиых чисел, установив существование неэквивалентных (т. е. имеющих разные мощности) бесконечных множеств, сформулировал (1878) общее понятие мощности множества. В 1879—84 Кантор систематически изложил принципы своего учения о бесконечности. Идеи Кантора встретили со стороны современников резкое сопротивление, но вcледствии оказали большое влияние на развитие математики.

Евклид (3 век до н. э.)

О жизни Евклида мы не имеем никаких достоверных данных. Вероятно, он жил во времена первого Птолемея (306—283), которому, согласно преданию, он заявил, что к геометрии нет «царской дороги». Его наиболее знаме­нитое и наиболее выдающееся произведение — тринадцать книг его «Начал» но ему приписывают несколько других меньших трудов. Среди последних так называемые «Данные», содержащие то, что мы назвали бы приложениями алгебры к геометрии.. Это первые математические труды, которые дошли до нас от древних греков полностью. Эта книга, была основной при изучении геометрии.

Пифагор (580-500 л. до н. э.)

Древнегре­ческий мыслитель, религиозный и политический деятель, основатель пифагореизма. Скуд­ные сведения о его жизни и учении трудно отделять от легенд, представляющих Пифагора как полубога, совершенного мудреца. В зрелом возрасте он поселился в южно италийском г. Кротоне, где осно­вал строго закрытое сообщество своих последователей, уже при жизни почитав­ших его как высшее существо.

В области математики П. приписы- вается систематич. введение доказательств в геометрию, построение планиметрии прямолинейных фигур, создание учения о подобии, доказательство теоремы, С именем П. связывают также учение о чётных и ;

нечётных, простых и составных числах,



Похожие работы:

  • Великий математик России Николай Иванович Лобачевский

    Реферат >> Математика
    ВЕЛИКИЙ МАТЕМАТИК РОССИИ Николай Иванович Лобачевский. (1792 ... в Казань прибыл знаменитый немецкий ученый-математик Бартельс, а еще через несколько месяцев ... был понят...» Первоклассные, отечественные математики, пользовавшиеся ученой известностью за границей ...
  • Полный курс лекций по математике

    Реферат >> Математика
    ... и интегрального исчисления начинается период математики переменных величин. Великим открытиям XVII века является ... , как логические системы равноправны. Три великих математика в 19 веке почти одновременно, независимо ...
  • Математика в Древней Греции

    Реферат >> Математика
    ... . 1.2 Поворотный пункт в истории античной математики Как ни велики заслуги пифагорейцев в развитии содержания ... - М.: Мир, 1984. - 231с. 7) Крыситский В. Шеренга великих математиков - Варшава: Наша Ксенгарня, 1981. - 31 ...
  • Математика в современном мире

    Реферат >> Математика
    ... и интегрального исчисления начинается период математики переменных величин. Великим открытиям XVII века является ... , как логические системы равноправны. Три великих математика в 19 веке почти одновременно, независимо ...
  • Історія математики Греції

    Реферат >> Математика
    ... , Архімеда, Аполлонія й інших великих математиків античності. Але в цих текстах перед ... Евкліда, 1482 р. Щонайменше три великих математики цього періоду були зв ... вказує елліністична астрономія. 9. З третім великим математиком еллінізму, Аполлонієм з Перги (260 ...
  • Философия математики

    Дипломная работа >> Математика
    ... и организатора. Философскую основу продуктивной деятельности великих математиков XIX века составляли материалистические принципы ... Б. Римана, М. Кантора, П.Л. Чебышева, С.А. Ковалевской и других великих математиков ХIХ века, можно убедиться, что ...
  • История доказательства Великой теоремы Ферма

    Реферат >> Педагогика
    ... уравнения получаем задачу умопомрачительной сложности. Великий математик XVII века француз Пьер де ... С. Великая теорема Ферма 2) Белл Т. Э. Великая проблема 3) Белл Т. Э. Гениальные математики 4) Хит Т. История греческой математики Содержание ...
  • Організація позакласної роботи з математики

    Дипломная работа >> Педагогика
    ... школяра велике значення має позакласна робота, зокрема позакласна робота з математики. Дуже ... до нашої ери. Піфагор був великим математиком, але ж люди вміли лічити ... з якої черпав свої перші знання з математики великий російський учений Михайло Ломоносов ...
  • Развитие математики в России. Петербург в XVIII-XIX столетиях

    Реферат >> История
    ... . Эйлер был одним из нескольких великих математиков, которые умели работать всюду прилюбых ... году отправился в Париж поучиться у великих французских математиков. Виктор Яковлевич Буняковский родился в 1804 ...