Дипломная работа : Аналіз та удосконалення енергозберігаючих технологій заготівлі та зберігання кормів в СТОВ "Глуховецьке" Козятинського району Вінницької області 


Полнотекстовый поиск по базе:

Главная >> Дипломная работа >> Ботаника и сельское хоз-во


Аналіз та удосконалення енергозберігаючих технологій заготівлі та зберігання кормів в СТОВ "Глуховецьке" Козятинського району Вінницької області




Аналіз та удосконалення енергозберігаючих технологій заготівлі та зберігання кормів в СТОВ “Глуховецьке” Козятинського району Вінницької області

Реферат

Пояснювальна записка с.,в тому числслі 5 рис.,14 табл.., 18літературних джерел.

Метою роботи є удосконалення енергозберігаючих технологій заготівлі та зберігання кормів в СТОВ «Глуховецьке» Козятинського району області шляхом дослідження передових технологій і вибору отриманої технології для даного господарства.

Дослідження виконані на основі енергетичного аналізу запропонованих технологій.

В роботі досліджено енергетичну структуру затрат на вирощування силосу, сіна і комбікормів. На основі даних досліджень визначено коефіцієнти енергетичної ефективності Ке коефіцієнт екологічної ефективності Кее. Денні коефіцієнти дозволяють порівняти запропоновані технології і визначити яка більш доцільна з точки зору енергетичних затрат.

Удосконалені існуючі технології заготівлі і зберігання кормів в СТОВ «Глуховецьке» Козятинського району Вінницької області дозволить даному підприємству економити велику частину енергетичних затрат, а тобто мати певний економічний ефект.

Енергетичний ефект складає 31781363МДж.

Результати роботи рекомендовано впропаджувати в СТОВ «Глуховецьке».

Зміст

Вступ

1 Аналіз механізованих технологій заготівлі та зберігання кормів в СТОВ «Глуховецьке» Козятинського району Вінницької області

1.1 Кортка виробничо технологічна характеристика підприємства

1.2 Аналіз механізованих технологій заготівлі та зберігання силосу

1.3 Аналіз механізованих технологій заготівлі та зберігання сіна

1.4 Аналіз механізованих технологій заготівлі та зберігання комбікормів

2 Загальні моделі ведення енергозберігаючого сільського господарства на сучасному етапі розвитку агропромислового комплексу

3 Сучасний стан механізації кормовиробництва вУкраїні

3.1 Стан та перспективи розвитку кормовиробництва в Україні. Роль галузі в агропромисловому комплексі

3.2 Впровадження елементів нових енерго та ресурсозберігаючих технологій при заготівлі консервованих грубих і концентрованих кормів

4 Розрахунок механізованих енергозберігаючих технологій заготівлі і зберігання кормів в СТОВ «Глуховецьке» Козятинського району Вінницької області

4.1 Розрахунок механізованих енергозберігаючих технологій заготівлі і зберігання сіна

4.2 Розрахунок механізованих енергозберігаючих технологій заготівлі і зберігання силосу

4.3 Розрахунок механізованих енергозберігаючих технологій заготівлі і зберігання комбікормів

5 Розроблення екологічних заходів та заходів охорони праці в механізованому кормовиробництві

5.1 Екологічні заходи механізації кормовиробництва

5.1.1 Маловідходні і безвідходні технології. Види відходів у сільському виробництві

5.1.2 Мінімізація негативного впливу техніки

5.1.3 Впровадження точного землеробства

5.2 Техніка безпеки при механізованих технологіях заготівлі та зберігання кормів

5.2.1 Загальні вимоги безпеки до тракторів та сільськогосподарських машин

5.2.3 Умови безпечного виконання навантажувально-розвантажувальних робіт

5.2.4 Умови безпечного виконання транспортних робіт

Висновки

Рекомендації

Список використаної літератури

Вступ

Під час формування собівартості тваринницької та птахівницької продукції вартість кормів, якщо порівняти з іншими статтями витрат, займає домінуюче місце, тому найбільше зумовлює рівень конкурентоспроможності на ринку цих видів продукції. Про сказане свідчить частку вартості кормів (зерно фуражу, білкових і небілкових кормових компонентів тощо) у продукції тваринництва виробленій на сільськогосподарських підприємствах у 2007р. вона становила в операційних витратах 51,9 а в матеріальних – 69,2%. У господарствах населення, як свідчать матеріали анкетного обстеження, наведенні показники ще вищі.

Тому і виникає потреба у впровадженні механізованих енергозберігаючих технологій заготівлі і зберігання кормів.

Метою магістерської роботи є аналіз і удосконалення енергозберігаючих технологій заготівлі та зберігання кормів в СТОВ “Глуховецьке” Козятинського району Вінницької області.

Для досягнення поставленої мети необхідно було вирішити наступні основні задачі механізації.

  1. Проаналізувати етапи кормо виробництва в Україні та досвід впровадження енергозберігаючих технологій.

  2. Провести аналітичне дослідження уже впроваджених технологій які рекомендуються для впровадження.

  3. Удосконалити енергозберігаючі технології заготівлі і зберігання кормів в даному господарстві.

Об’єктом дослідження в магістерській роботі є механізація процесів заготівлі і зберігання кормів.

Предметом дослідження є механізовані енергозберігаючі технології.

В роботі використовують аналітичні методи дослідження: аналіз, синтез, порівняння, систематизація, математичне моделювання.

В першому розділі проаналізовано і досліджено існуючі механізовані технології заготівлі і зберігання кормів в СТОВ “Глуховецьке” Козятинського району Вінницької області.

В другому розділі наведенні загальні моделі ведення енергозберігаючого сільського господарства на сучасному етапі розвитку агропромислового комплексу і зроблені висновки, щодо впровадження в господарстві однієї з моделі.

В третьому розділі проведений аналіз стану механізації нормовиробництва в Україні.

В четвертому розділі проведенні теоретичні дослідження сучасних енергозберігаючих технологій заготівлі і зберігання кормів. На основі досліджень були запропоновані енергозберігаючі технології.

1 Аналіз механізованих технологій заготівлі та зберігання кормів в СТОВ «Глуховецьке» Козятинського району Вінницької області

    1. Коротка виробничо-технологічна характеристика підприємства

СТОВ “Глуховецьке” розташований в с.м.т. Глухівці Козятинського району Вінницької області. Ферма і МТП розташоване на окраїні селища. Найблища залізнична зупинка розташована за 100 м. від МТП, а залізнична станція за 6 км. Відстань до районного центра м. Козятин 12 км. до обласного центра м. Вінниці 65 км. Господарство має добре шляхове сполучення з районним і обласним центром. А також з усіма пунктами здачі с/г продукції.

Землі господарства знаходяться на рівнинній місцевості в грунтово-кліматичній зоні лісостепу. Середньорічна температура повітря становить +4,9 – 50с. Абсолютний максимум температури +400с, мінімальний – 340с. Вегетаційний період в середньому триває 265 днів. Середньорічна норма опадів 525-540 мм, але бувають відхилення від 245 до 770 мм. Найбільша кількість випадає в червні – липні 142-174 мм менше всього в 18-20мм.

В цілому кліматичні умови господарства придатні для вирощування всіх районованих с/г культур. Ґрунти господарства в основному чорноземи. Для того щоб вести успішну господарську діяльність на полях господарства треба раціонально використовувати земельні угіддя на основі наукового підходу до організації праці в господарстві створені хороші умови для правильного використання земельних угідь, структура яких представлена в таблиці 1.1 на 1.01.08

Таблиця 1.1 Динаміка земельних угідь

Площа га

2006

2007

2008(прогноз)

Загальна земельна площа

3165

3165

3165

Всього с/г угідь

2528

2523

2523

З них:

Орної землі

2271

2266

2270

Багаторічні насадження

176

176

176

Сінокоси (багаторічні трави)

19

9

8

Ставки і водосховища

62

62

62

Пасовища

-

10

7

Проводити аналіз таблиці 1.1 робимо висновок, що в СТОВ “Глуховецьке” найбільшу частку земельної площі займає рілля.

В господарстві надзвичайно розвинуте тваринництво, протягом останніх років воно займає одне з передових місць в районні. Чисельність стада ВРХ досягнуло в цьому році 2500 голів, а свиней 240. Надої на одну корову склали 3144 літри. Тому в даному господарстві особливу увагу слід приділяти нормо виробництву. Структура угідь на яких вирощуються корма наведені в таблиці 1.2

Таблиця 1.2 Динаміка земельних угідь на яких вирощують корм

Культура

Площа га

2006

2007

2008(прогноз)

Кукурудза на силос

400

350

380

Люцерна на сіно

184

198

200

Ячмінь фуражний

147

156

144

Також в господарстві для корму тварин використовуються побічна продукція деяких інших культур (жом, солома, гичка цукрових буряків).

Механізовані технології які застосовуються в СТОВ “Глуховецьке” для виробництва кормів не досконалі і потребують удосконалення.

    1. Аналіз механізованих технологій заготівлі та зберігання силосу

В СТОВ «Глховецьке» кукурудзу на силос вирощують по інтенсивній технології. Технологічна карта вирощування кукурудзи на силос наведена в таблиці 1.3.

Таблиця 1.3. Технологічна карта вирощування кукурудзи на силос. Урожайність 28000 кг/га

Назва операції

Якісні та об'ємні показники

Склад МТП

Обслуговуючий персонал

Продуктивність

Витрати палива, кг

Затрати праці, люд. - год.

Трактор, автомобіль

С-г машинa

К-ть с-г маш. в агрегаті

Тракторист

Допо-міжний персонал

за год

за зміну

на 1 т.

на 1 га.

на 1 т.

на 1 га.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1

Дискування

1 га

Т-150К

ЛДГ-15

1

1

-

8,4

58,8

-

2,5

-

0,12

2

Навантаження орг. добрив

30 т

Т-150

ПФП-2

1

1

-

80

560

0,173

5,2

0,06

0,19

3

Транспорт. і внесення орг. Добрив

30 т

Т-150К

ПРТ-10

1

1

-

20

140

1,0

30

0,05

1,58

4

Навантаження мін. добрив

0,8 т

ЮМЗ-6Л

ПЭ-0,8Б

1

1

-

60

420

0,133

0,11

0,014

0,1

5

Транспорт. і внесення мін. Добрив

1 га

МТЗ-80

МВУ-5

1

1

-

6,2

43,4

-

1,6

-

0,16

6

Оранка

1 га

Т-150К

ПЛН-5-35

1

1

-

1,5

10,5

-

13,66

-

0,67

7

Закриття вологи

1 га

Т-150

С-18А+БЗТС-1

1+18

1

-

10,3

72,1

-

1,4

-

0,1

8

Транспортування води

0,3 т

МТЗ-80

ЗЖВ-1,8

1

1

-

2,7

18,9

3,7

1,1

0,37

0,11

9

Приготування робочої рідини

0,3 т

МТЗ-80

АПЖ-12

1

1

1

6

42

1,67

0,5

0,33

0,1

10

Обприскування гербіцидом

1 га

МТЗ-80

ОП-2000

1

1

-

3,8

22,8

-

2,63

-

0,26

11

Боронування

1 га

Т-150

С-18А+БЗТС-1

1+18

1

-

10,3

72,1

-

1,4

-

0,1

12

Передпосівний обробіток

1 га

Т-150К

Європак

1

1

-

3,7

25,9

-

6,5

-

0,27

13

Транспорт. насіння і мін. добрив

0,15 т

МТЗ-80

2ПТС-4

1

1

-

6

42

1,33

0,2

0,167

0,03

14

Сівба

1 га

МТЗ-80

СУПН-8

1

1

1

2

14

-

5,0

-

1,0

15

Досходове боронування

1 га

МТЗ-80

С-11У+ЗОР-0,7

1+6

1

-

4,2

29,4

-

2,4

-

0,4

16

Післясходове розпушування міжрядь

1 га

МТЗ-80

КРН-5,6

1

1

-

2,5

17,5

-

4,0

-

0,4

17

Транспортування води

0,3 т

МТЗ-80

ЗЖВ-1,8

1

1

-

2,7

18,9

3,7

1,1

0,37

0,11

18

Приготування робочої рідини

0,3 т

МТЗ-80

АПЖ-12

1

1

1

6

42

1,67

0,5

0,33

0,1

19

Обприскування гербіцидом

1 га

МТЗ-80

ОП-2000

1

1

-

3,8

22,8

-

2,63

-

0,26

20

Міжрядний обробіток

1 га

МТЗ-80

КРН-5,6

1

1

-

2,5

17,5

-

4,0

-

0,4

21

Підживлення рослин

1 га

МТЗ-80

КРН-5,6

1

1

-

2,5

17,5

-

4,0

-

0,4

22

Збирання на силос

1 га

КСК-100

-

-

1

-

1,3

9,1

-

5,7

-

1,769

23

Транспортування силос. маси

50 т

МТЗ-80

ПСВ-12,5

1

1

-

5

35

2

100

0,2

10

24

Трамбування силосної маси

50 т

Т-150

-

-

1

-

40

280

0,5

25

0,025

1,25

25

Прикривання маси

50 т

Д-606

-

-

1

-

50

350

2,0

10

0,02

1,0

 

Разом

 

 

 

 

 

 

 

 

 

241,13

 

19,8

Для оцінки даної технології з точки зору енергетичних затрат необхідно провести енергетичний аналіз даної технології. Основним критерієм енергетичного аналізу є коефіцієнт енергетичної ефективності Ке який розраховують, як відношення енергії, що міститься в урожаї (Еу) до енергії (не поновлюваної) витраченого на його виробництво (Енп)

(1)

де - енергоємність урожаю МДж/га; (2)

ек – 16,39 МДж/кг – енергоємність 1кг сухої речовини кукурудзи на силос;

U-28000 кг/га - урожай кукурудзи;

КСР – 0,25 - середній вміст сухої речовини

(2)

Витрата не поновлюваної енергії при виробництві культури з розрахунку на 1га:

Енп= Еп+ Еее+ Ен+ Емд+ Еод+ Епц+ Евод+ Епл+ Емех (3)

де Еп - витрата енергії на паливо;

ВП= 241,13 кг/га – витрата палива;

еП=42,7 МДж/кг – енергетичний еквівалент дизельного палива.

Еее – витрати на електроенергію, Еее=0;

Ен – витрата енергії на насіння,

Енн∙ен=150∙17,6= 2640 МДж/кг (4)

Нн – 150 кг/га – норма висіву кукурудзи.

ен - 17,60 МДж/кг – енергетичний еквівалент насіння кукурудзи.

Емд - витрата енергії на мінеральні добрива,

Емд= Нмд∙емд=1100∙27,6=30360 МДж/кг (5)

Нмд=1100 кг/га – норма внесення мінерального добрива (кальцієва селітра).

емд=27,6 МДж/га – енергетичний еквівалент аміачної селітри.

Еод – витрата енергії на органічні добрива, Еод=0 МДж/га.

Еод =Нод ∙ еод=30000 ∙ 0,42=12600 МДж/га (6)

Нод =30000 кг/га – норма внесення органічних добрив

Епц – витрата енергії на пестецеди, Епц=0 МДж/га

Епц = Нпд ∙ епд =314,9 ∙ 10= 3149 МДж/га (7)

епд =314,9 МДж/кг – енергетичний еквівалент гербіциду

Нпд = 10кг/га – витрати пестициду

Евод – витрати енергії на воду

Евод =Нвод ∙ евод = 2,3 ∙ 0,3= 0,69 МДж/га (8)

евод = 2,3 МДж/м енергетичний еквівалент води;

Нвод = 0,3 м³ /га – витрати води.

Епл – витрати енергії на працю людей

Епл = Зпл ∙ епр = 19,8 ∙ 60,8 =1203,84 МДж/га

Зпр =19,8 люд/га – затрати праці

епр = 60,8 МДж/люд.год. – енергетичний еквівалент людської праці

Емех – витрата енергії на використання техніки розраховується в залежності від продуктивності МТА.

(9)

Етр – енергоємність трактора:

Етр-МТЗ-80 = 76,8 МДж/год,

Етр-Т-150К = 183,1 МДж/год,

Етр-ЮМЗ-6Л = 76,5 МДж/год.

Етр-Т-150К = 169,5 МДж/год,

Езч – енергоємність зчіпки:

Езч С-18А=141,0 МДж/год

Езч С-11У=56,0 МДж/год

Есгм – енергоємність сільськогосподарських машин:

ЕЛДГ-15=301,2 МДж/год,

ЕПФП-2= 120,0 МДж/год,

ЕПРТ-10 = 315,3 МДж/год,

ЕПЭ-0,8Б = 115,2 МДж/год,

ЕМВЧ-5= 144,1 МДж/год,

ЕПЛН-5-35 = 28,8 МДж/год,

ЕБЗТС-1 = 4,3 МДж/год,

ЕАПЖ-12=44,7 МДж/год,

ЕЗЖВ-1,8= 60,4 МДж/год,

ЕОП-2000 = 376,4 МДж/год.

ЕЄвропак= 66,4 МДж/год,

Е2-ПТС-4 = 75,2 МДж/год,

ЕСУПН-8 = 120,5 МДж/год,

ЕЗОР-0,7=3,8 МДж/год,

ЕКРН-5,6= 66,3 МДж/год,

ЕД-606 = 167,3 МДж/год.

ЕПСВ-12,5= 66,3 МДж/год,

ЕКСК-100 = 748,9 МДж/год.

Витрати енергії на проведення сільськогосподарських операцій по вирощуванню кукурудзи на силос, враховуючи що для операцій продуктивність яких дана в і витрата матеріалу в т/га витрат енергії визначається за формулою.

(10)

Витрати не поновлюваної енергії будуть становити.

Енп =10296,25+2640+30360+12600+3149+0,69+1203,84+(57,65+1,56 +747,45+2,5+35,62+141,26+37,6+15,24+6,07119,26+67,43+2,3+98,65+37,04+ +57,24+576+ +1451+211,8+167,3)=64189,79 МДж/га

Тоді коефіцієнт енергетичної ефективності буде становити:

Так як Ке не більше 2, то дана технологія є не енергозберігаючою і має бути замінена на енергозберігаючу.

Розраховуємо також коефіцієнт екологічної ефективності

1.3 Аналіз механізованих технологій заготівлі та зберігання сіна

В СТОВ «Глуховецьке» сіно заготовляють способом пресування в тюки і зберігають дані тюки на території ферми в приміщенні. Механізована технологія заготівлі та зберігання сіна наведена в таблиці №1.4

Для того щоб оцінити доцільність даної механізованої технології необхідно визначити коефіцієнт енергетичної ефективності, який визначається за формулою

де - енергоємність 1кг.суої речовини люцерни на сіно

ек – 21.83 МДж/кг – енергоємність 1кг сухої речовини люцерни на сіно;

U- 2000кг/га - урожай люцерни;

КСР – 0.25 - середній вміст сухої речовини

Витрати не поновлюваної енергії при виробництві культури береться з формули

Енп= Еп+ Еее+ Ен+ Емд+ Еод+ Епц+ Евод+ Епл+ Емех

де Еп - витрата енергії на паливо;

ВП=83,77 кг/га – витрата палива;

еП=42,7 МДж/кг – енергетичний еквівалент дизельного палива.

Еее – витрати на електроенергію, Еее=0;

Ен – витрата енергії на насіння,

Таблиця №1.4. Технологічна карта вирощування люцерни на сіно

№ п/п

Назва операції

Якісні та об'ємні показники

Склад МТП

Обслуговуючий персонал

Продуктивність

Витрати палива, кг

Затрати праці, люд. - год.

Трактор, автомобіль

С-г машинa

К-ть с-г маш. в агрегаті

Тракторист

Допоміжний персонал

за год.

за зміну

на 1 т.

на 1 га.

на 1 т.

на 1 га.

1

Дискування

1 га

Т-150К

БД-10

1

1

-

5,5

38,5

-

3,3

-

0,18

2

Навантаження мін. добрив

0,1 т

ЮМЗ-6Л

ПЭ-0,8Б

1

1

-

60

420

0,133

0,07

0,014

0,07

3

Транспорт. і внесення мін. добрив

1 га

МТЗ-80

МВУ-5

1

1

-

6,2

43,4

-

1,6

-

0,16

4

Оранка

1 га

Т-150К

ПЛН-5-35

1

1

-

1,1

7,7

-

16

-

0,91

5

Закриття вологи

1 га

Т-150

С-18А+БЗСС-1

1+18

1

-

10,3

72,1

-

1,4

-

0,1

6

Передпосівний обробіток

1 га

Т-150К

Європак

1

1

-

3,7

25,9

-

6,5

-

0,25

7

Сівба

1 га

МТЗ-80

СЗУ-3,6

1

1

-

2,2

15,4

-

4,5

-

0,45

8

Скошування

1 га

МТЗ-80

КПРН-3

1

1

-

1,2

8,4

-

8,3

-

0,83

9

Ворушіння

1 га

Т-25А

ГВК-6

1

1

-

2,5

17,5

-

4,0

-

0,25

10

Згрібання у валки

1 га

Т-25А

ГВК-6

1

1

-

2,5

17,5

-

4,0

-

0,25

11

Пресування

1 га

МТЗ-80

ПРП-1,6

1

1

-

0,6

4,2

-

16,6

-

1,67

12

Транспортування тюків

2 т

МТЗ-80

2ПТС-4

1

1

-

3

21

3,3

10,0

0,33

1,0

13

Скирдування тюків

2 т

ЮМЗ-6Л

ПФ-0,5

1

1

-

4

28

2,5

7,5

0,25

0,75

 

Всього

 

 

 

 

 

 

 

 

 

83,77

 

6,87

Енн∙ен=20∙20,2= 404 МДж/кг

Нн – 20 кг/га – норма висіву люцерни.

ен - 20,2 МДж/кг – енергетичний еквівалент насіння люцерни.

Емд - витрата енергії на мінеральні добрива,

Емд= Нмд∙емд=100∙13,6=1360 МДж/кг

Нмд=100 кг/га – норма внесення мінерального добрива (кальцієва селітра).

емд=13,6 МДж/га – енергетичний еквівалент кальцієвої селітри.

Еод – витрата енергії на органічні добрива, Еод=0 МДж/га.

Епц – витрата енергії на пестецеди, Епц=0 МДж/га

Епл – витрата енергії на людей,

Еплпр∙епр = 60,8·6,87= 417,69

Зпр=6,87 люд∙год/га – затрати праці,

епр=60,8 МДж/люд∙год – енергетичний еквівалент.

Емех – витрата енергії на використання техніки розраховується в залежності від продуктивності МТА.

Для операції продуктивність яких дана в тоннах і витрата матеріалу в т/га витрата енергії визначається за формулою.

Етр – енергоємність трактора:

Етр-Т-150К = 183,1 МДж/год,

Етр-МТЗ-80 = 76,8 МДж/год,

Етр-ЮМЗ-6Л = 76,5 МДж/год,

Етр-Т-150 = 169,5 МДж/год,

Етр-Т-25 = 48,3 МДж/год,

Езч – енергоємність зчіпки:

Ес -18А=141,0 МДж/год

Есмг – енергоємність сільськогосподарських машин:

ЕБД-10=296 МДж/год,

ЕНЭ-0,85= 115,2 МДж/год,

ЕМВУ-5 = 144,1 МДж/год,

ЕПЛН-5-35 = 28,8 МДж/год,

ЕЄвропак= 66,4 МДж/год,

ЕБЗСС-1 = 3,6 МДж/год,

ЕСЗУ-3,6=158,4 МДж/год,

ЕКПРН-3= 194,8 МДж/год,

ЕГВК-6 = 147,3 МДж/год.

ЕПРП-1,6 = 134,3 МДж/год,

Е2ПТС-4 = 75,3 МДж/год,

ЕЗОР-0,7=3,8 МДж/год,

ЕПФ-0,5= 3,3 МДж/год,

Визначаємо витрати енергії на проведення сільськогосподарських операцій по вирощуванню люцерни на сіно:

Загальні витрати не поновлюваної енергії будуть становити :

Енп=3576,97+404+13060+417,69+(87,1+0,3+35,6+192,6+36,43+67,4+106,9+ +226,3+78,24+78,24+351,8+101,4+39,9)=7160,87 МДж/га

Тоді коефіцієнт енергетичної ефективності буде становити:

Також розраховуємо коефіцієнт екологічної ефективності

Дана технологія є енергозатратною і має бути вдосконалена.

1.4 Аналіз механізованих технологій заготівлі та зберігання комбікормів

В господарствах Вінницької області фуражний ячмінь є основною культурою для виробництва комбікормів. Тому я і буду проводити енергетичний аналіз заготівлі та зберігання ярого ячменю в СТОВ «Глуховецьке». Технологія вирощуванню ячменю наведено в таблиці 1.5.

Таблиця 1.5. Технологічна карта заготівлі ячменю

Назва операції

Склад МТП

Обслуговуючий персонал

Продуктивність

Витрати палива, кг

Затрати праці, люд. - год.

Трактор, автомобіль

С-г машинa

К-ть с-г маш. в агрегаті

Трак-торист

Допо-міжний персонал

за год.

за зміну

на 1 т.

на 1 га.

на 1 т.

на 1 га.

1

2

4

5

6

7

8

9

10

11

12

13

14

1

Дискування

Т-150К

БДТ-7

1

1

-

5.5

38.5

5,3

-

0.18

2

Змішування мін. Добрив

МТЗ-80

СЗУ-20

1

1

-

60

420

0.133

1

0.014

0.07

3

Транспорт. і внесення орг. добрив

МТЗ-80

ІРМГ-4

1

1

-

5.8

40.6

-

1,4

-

0.18

4

Розпушування

Т-150К

ЛГ-3-5

1

1

-

2.6

18.2

-

6,9

-

0.82

5

Культивація

Т-150

Європак

1

1

3

4.2

29,4

-

4,4

0.313

6

Передпосівна культивація

Т-150

РВК-5,4

1

1

-

3.8

26,6

-

3,8

0.26

7

Перевезення насіння

МТЗ-80

2ПТС-4

1

1

-

6

42

0,25

0,03

8

Навантаження добрив

вручку

-

-

-

2

500

-

-

-

-

4,3

9

Перевезення мін. добрив

ЮМЗ-6Л

2ПТС-4

1

1

6

42

2,5

0,03

10

Завантаження мін. добрив у сівалку

вручку

2

500

3500

-

4,3

11

Сівба з підсівом трав

ДТ-75

СП-11+ 3СЗ-3.6

3

1

3

4,2

29,4

2,6

0,313

12

Транспортування води

ГАЗ-53Б

-

1

1

-

2,7

18,9

-

0,25

0,11

13

Приготування робочого розчину

ЮМЗ-6Л

СТК-5

1

1

1

6

42

1,67

7

0,33

0,1

14

Внесення отрутохімікатів

ЮМЗ-6Л

ОПВ-1200

1

1

-

3,8

22,8

1,5

0,26

15

Транспортування води

ГАЗ-52

1

1

-

2,7

18,9

0,25

0,11

16

Приготування робочого розчину

ЮМЗ-6Л

СТК-5

1

1

1

6

42

1,67

7

0,33

0,1

17

Внесення гербіцидів

ЮМЗ-6Л

ОПВ-1200

1

1

3,8

22,8

1,5

0,26

18

Пряме комбайнування

РСМ-10

1

1

1

1,14

7,98

8,5

0,88

19

Транспортування зерна

ГАЗ-53Б

1

1

-

15т/км

105т/км

0,29

0,81

20

Стягування соломи

Т-150

ВТУ-10

1

1

1

450т

28т

1,5

1,09

21

Скиртування соломи

ЮМЗ-6Л

СПР-0,5

1

1

4

28т

1,4

2,91

 

Разом

 

 

 

 

 

 

 

 57,34

 

17,416

Для енергетичної оцінки даної технології необхідно визначити коефіцієнт енергетичної ефективності

де - енергоємність урожаю

ек – 19.13 МДж/кг – енергетичний еквівалент ячменю;

U- 2760кг/га - урожай ячменю;

КСР – 0,86 - середній вміст сухої речовини

Витрати не поновлюваної енергії при виробництві культури з розрахунку на 1 га

Енп= Еп+ Еее+ Ен+ Емд+ Еод+ Епц+ Евод+ Епл+ Емех

де Еп - витрата енергії на паливо;

ВП=57,34 кг/га – витрата палива;

еП=42,7 МДж/кг – енергетичний еквівалент дизельного палива.

Еее – витрати на електроенергію, Еее=0;

Ен – витрата енергії на насіння,

Енн∙ен=160∙19,13= 3060,8 МДж/кг

Нн – 160 кг/га – норма висіву ячменю.

ен - 19,13 МДж/кг – енергетичний еквівалент насіння ячменю.

Емд - витрата енергії на мінеральні добрива,

Емд= Нмд∙емд=700∙27,6=19320 МДж/кг

Нмд=700 кг/га – норма внесення мінерального добрива (аміачна селітра).

емд=27,6 МДж/га – енергетичний еквівалент аміачної селітри.

Еод – витрата енергії на органічні добрива, Еод=0 МДж/га.

Епц – витрата енергії на пестициди.

Епц – Нпц· епц=314,9·10=3149 МДж/га

епц =314,9-енергетичний еквівалент пестициду

Нпц=10 кг/га – витрата пестициду.

Евод – витрата енергії на воду.

Евод = Нвод · евод = 0,3 · 2,3 = 0,69 МДж/га

Нвод=0,3 м3/га – витрата води

евод=2,3 МДж/м3 – енергетичний еквівалент води.

Епл – витрата енергії на працю людей

Еплпр · епр = 60,8 · 17,416 = 1058,89 МДж/га.

Зпр=17,416 люд∙год/га – затрати праці,

епр=60,8 МДж/люд∙год – енергетичний еквівалент.

Емех – витрата енергії на використання техніки розраховується в залежності від продуктивності МТА.

Етр – енергоємність трактора:

Етр-Т-150К = 183,1 МДж/год,

Етр-МТЗ-80 = 76,8 МДж/год,

Етр-ЮМЗ-6Л = 76,5 МДж/год,

Етр-Т-150 = 169,5 МДж/год,

Етр-ДТ-75 = 48,3 МДж/год,

Етр-РСМ-10 = 1359,0 МДж/год,

Етр-ГАЗ-53Б = 53,6 МДж/год.

Езч – енергоємність зчіпки:

Есп -114=56,0 МДж/год

Есгм – енергоємність сільськогосподарських машин:

ЕБДТ-7=280,0 МДж/год,

ЕІРМГ-4= 127,5 МДж/год,

ЕЛГ-3-5 = 18,18 МДж/год,

ЕЄвропак= 66,4 МДж/год,

ЕРВК-5,4 = 149,4 МДж/год,

ЕСЗУ-20=233,1 МДж/год,

ЕСЗ-3,6= 155,2 МДж/год,

ЕСТК = 63,2 МДж/год.

ЕОПВ-1200 = 376,2 МДж/год,

Е2ПТС-4 = 75,3 МДж/год,

ЕВТУ-10=37,5 МДж/год,

ЕСПР-0,5= 15,3 МДж/год,

Враховуючи, що для операцій продуктивність яких дана в тоннах і витрата матеріалу в т/га витрата енергії буде становити:

То втрати на енергію будуть становити:

Загальні витрати не поновлюваної енергії будуть становити :

Енп=2448,4+3060,8+19320+3149+0,69+1058,89+(81,7+3,099+35,2+72,18+56,1+83,9+25,35+25,3+47,96+5,9+23,28+119,13+1192,1+4,0+155,25+68,85)=31037,97 МДж/га

Тоді коефіцієнт енергетичної ефективності буде становити:

Так як Ке < 2 то дано технологія є енергозатратною.

Розраховуємо також коефіцієнт екологічної ефективності

П=167364 – екологічний поріг.

Враховуючи данні розрахунки можна зробити висновок, що технологія заготівлі ячміню в СТОВ «Глуховецьке» енергозатратна і має бути вдосконалена.

2 Загальні моделі ведення енергозберігаючого сільського господарства на сучасному етапі розвитку агропромислового комплексу

Українська влада взяла чіткий курс на створення бренду України як державищо продукує екологічну продукцію. За таких умов актуальним стає ефективне використання наших біологічних ресурсів та мінімальне застосування - антропогенних (агрохімії, диз-палива та ін.). Актуальність обраного напряму, з одного боку, зумовлена широкими можливостями українських земель та зростаючою потребою в чистій продукції у світі. [17]

Всі види ресурсів, зокрема енергоносії, технічні засоби, праця людей, вода мають певну цінність і відповідно, підлягають ретельному обліку при їхньому перерозподілі. І тільки ґрунтові фактори родючості не мають ціни та не контролюються. Це створює умови для широкого використання їх з метою отримання прибутку, що супроводжується інтенсивною деградацією земельних ресурсів та їхнім виснаженням. Однак унікальність ґрунтового покриву полягає в тому, що він є надійним, екологічно безпечним джерелом поновлювальної енергії, яка в процесі сільськогосподарського виробництва зв'язується рослинами завдяки фотосинтезу. При цьому рівень природного потенціалу продуктивності в різних ґрунтово-кліматичних умовах суттєво змінюється і встановлюється у варіантах стаціонарних дослідів без застосування добрив і меліорантів, які моделюють найбільш розповсюджену сучасну практику ведення сільськогосподарського виробництва. Наприклад, в західному Лісостепу на чорноземі опідзоленому на контролі вихід енергії з урожаєм основної і побічної продукції культур 5-пільної зерно-просапної сівозміни у середньому сягає 105 ГДж/га (2 ГДж 1 ц кормових одиниць (к.о.) В інших ґрунтово-кліматичних умовах енергія, що отримується з врожаєм, коливається в середньому у межах 70-90 ГДж/га. Це свідчить про те, що при дотриманні вимог агротехнологій тільки за рахунок природної родючості ґрунту можна забезпечити досить високу продуктивність посівів. Для порівняння, витрати антропогенних ресурсів в енергетичному еквіваленті (Еа) при таких агротехнологіях щорічно складають лише 10-13 ГДж/га, відповідно, окупність 1 ГДж урожаєм сягає 8-9 ГДж/га (коефіцієнт енергетичної ефективності (Кее). [18]

Однак слід враховувати, що в цьому випадку мають місце значні втрати ґрунтової енергії (Ег), зосередженої в органічній речовині і в запасах елементів живлення — до 30 ГДж/га на рік. Очевидно, що відповідно до закону збереження енергії безповоротне використання енергетичного потенціалу ґрунтів супроводжується їх енергетичною деградацією і зниженням продуктивності з темпом у середньому 1-1,5 ц к.о./га за рік. Для оцінки цих процесів в масштабах України на основі узагальнення багаторічних експериментальних даних були розроблені гіпотетичні сценарії функціонування агроекосистем (табл.2.1).

Таблиця 2.1. Баланс енергії при різних сценаріях розвитку сільськогосподарського виробництва

Показники

Модель1

Модель2

Модель3

Продуктивність с.г. угідь, т к.о./га

1,5

2,5

5,0

Площа с.г. угідь, млн. га

40

Нагромадження біомаси, млн. т к.о.

60

100

200

Енергія врожаю (Ев), млн. ГДж

1200

2000

4000

Затрати антропогенних (промислових) ресурсів (Еа), ГДж/га

0

10

25

Еа, млн. ГДж

0

-400

-1000

Втрати ґрунтової енергії (Еа), ГДж/га

0

15

0

Еа, млн. ГДж

0

-600

0

Необхідно к.о для виробництва продуктів харчування на 1 людину на добу*

2,8

Енергія на продукти харчування, млн. ГДж за рік**

-1000

Баланс енергії, млн. ГДж

200

0

2000

Надходження енергоносіїв ззовні, млн. ГДж***

3600

Компенсація, %

6

0

55

*середній раціон на одну людину – 2480ккал

**з розрахунку на 50 млн. чоловік

***36 млн. т нафти, 72 млрд. м3 природного газу

Модель 1 — всі земельні ресурси використовуються як природні кормові угіддя з продуктивністю 1,5 т к.о./га (1 т к.о. 20 ГДж; 1 т дизельного пального 40 ГДж). Рослинна біомаса згодовується тваринам, а вироблені продукти харчування — для покриття внутрішніх потреб або на реалізацію на світовому продовольчому ринку. При цьому затрати антропогенних ресурсів, головним чином це праця людей і тяглова сила тварин, можуть бути відносно незначні (до1 ГДж/га). За рахунок високого рівня рециркуляції біогенних елементів з відходами тваринництва забезпечується збереження ґрунтового енергетичного потенціалу, продуктивність сільськогосподарських угідь зростає. При розгляді цього сценарію стає зрозумілим значення тваринництва як з точки зору акумуляції і концентрації енергії, розподіленої на великій площі у вигляді рослинної біомаси, особливо її малоцінної частини, так і з позицій відновлення енергетичного потенціалу ґрунтів.

Модель 2 відбиває сучасний стан — спеціалізація переважно рослинницька, продуктивність сільськогосподарських угідь на рівні 2,5 т к.о./га, мінеральні добрива практичнр не використовуються, витрати антропогенної енергії складають на рівні 10 ГДж/га. При такому сценарії вся продукція виробляється за рахунок природної родючості ґрунтів. У стаціонарних агротехнічних дослідах такий стан моделюється у варіантах без добрив (контроль), де за рахунок мінералізації органічної речовини ґрунту і систематичного відчуження з урожаєм біогенних елементів запаси енергії щорічно скорочуються у середньому за ґрунтовими відмінностями на 15 ГДж/га.

Модель 3 — продуктивність земель на рівні 5,0 т к.о./га, з максимальними значеннями до 10,0 т к.о./га, що відповідає комбінованій рослинницько-тваринницькій спеціалізації та рівню накопичення рослинної біомаси в стаціонарних дослідах на фоні органічних і органо-мінераль-них систем удобрення. За таких агротехнологій і, особливо, за наявності у сівозмінах багаторічних бобових трав, забезпечується розширене відтворення родючості ґрунту, зростає рівень його окультуреності і ефективної родючості. Однак порівняно з контрольними варіантами (модель 2) енергоємність виробництва значно збільшується і становить у середньому 25 ГДж/га (техніка — 15 %, енергоносії — до 20 %, добрива — до 50 %, пестициди і насіння - 15-20 %). [17]

Потреба населення в продуктах харчування встановлювалася, виходячи з середніх добових раціонів на людину 2480 ккал. Для виробництва відповідних продуктів необхідно витратити приблизно 2,8 к.о., а для задоволення потреб 50 млн. населення на рік необхідно до 50 млн. т к.о. рослинної біомаси. В енергетичному еквіваленті це відповідає 1 млрд. ГДж. Таким чином, позитивну частину балансу енергії в агросфері визначає рівень продуктивності сільськогосподарських угідь, від'ємну — витрати антропогенної енергії, скорочення енергопотенціалу ґрунту, а також витрати енергії рослинної біомаси на виробництво продуктів харчування для внутрішніх потреб. При тваринницькій спеціалізації (модель 1) і за сучасного стану аграрного виробництва (модель 2) баланс врівноважується, при реалізації третьої моделі додаткове накопичення біологічної енергії сягне 2 млрд. ГДж. Якщо в Україну щорічно імпортується близько 36 млн. т нафтопродуктів та 72 млрд. м3 природного газу, які в енергетичному еквіваленті відповідають 3,6 млрд. ГДж, то компенсація енергії вуглеводнів за рахунок рослинної біомаси може становити понад 50 %. [16]

Наведеш гіпотетичні моделі свідчать про високий природний потенціал продуктивності агросфери України, особливо за наявності розвинутої тваринницької галузі. Однак при реалізації на практиці третьої моделі розвитку аграрного виробництва вирішується триєдине завдання: досягається повне забезпечення населення власними продуктами харчування, відновлюється і зростає потенціал продуктивності земельних ресурсів та компенсується значна частина або, за певних умов, навіть всі енергоносії зовнішнього виробництва. Зрозуміло, що мова йде лише про гіпотетичні моделі, однак вони будуються на конкретних результатах досліджень та розкривають значення сільськогосподарського виробництва в забезпеченні енергетичної незалежності і продовольчої безпеки держави.

Важливо також, що енергоносії можна співвідносити з рослинною біомасою не тільки за енергетичними еквівалентами, але й у вартісних показниках. Наприклад, ціни на нафтопродукти (бензин, дизельне пальне) в Україні складаються на рівні 2,5-3,0 грн. за літр. З іншого боку, для виробництва 1 кг м'яса ВРХ необхідно витратити приблизно 8 к.о. рослинної біомаси. При цінах на м'ясопродукти на рівні 25 грн. вартість 1 к.о. буде становити близько 3 грн. Аналогічне співвідношення існує по молоку, вартість якого після знежирення сягає 2,5 грн., при витратах кормів 1 к.о. на 1 літр. Така ж ситуація з хлібопродуктами, цукром, жирами. Отже рослинна біомаса за цінністю не поступається іншим енергоносіям, а найбільш вигідне її використання досягається шляхом формування спеціалізації, максимально адаптованої до конкретних умов виробництва. При формуванні абс вдосконаленні сільськогосподарського виробництва необхідно прагнути до розвитку його галузевої структури. Це супроводжується: створенням замкнутих виробничих циклів, коли відходи однієї галузі є сировиною для іншої, а найбільш важливі речовини використовуються багаторазово з колообігу з невисокими втратами при мінімальному залученні ресурсів зовнішнього походження. Так, наприклад, за спеціалізації виробництва з навантаженням тварин 2 голови ВРХ на 1 гектар сільськогосподарських угідь, з гноєм (20 т/га) :: ґрунт повертаються майже всі елементи живлення (80 % азоту, 95 % фосфору і 90 % калію), відчужені з рослиною біомасою. При цьому порівняно з рослинницькою легалізацією потреба в мінеральних добривах знижується до мінімуму, а економія коштів для землекористування площею 2-3 тис. га і може сягати 300-400 тис. грн. на рік. Це пояснюється тим, що з тваринницькою продукцією за межі господарства вилучається у багато разів менше біогенних елементів, ніж з рослинницькою. Слід враховувати, що така спеціалізація по ВРХ для забезпечення повноцінної годівлі тварин передбачає наявність в структурі посівних площ 25-30 % багаторічних бобових трав, які за вегетаційний період накопичують у ґрунті до 120 кг/га біологічного азоту. Еквівалентна кількість мінеральних добрив має вартість близько 300 грн.

Нетоварна частина урожаю при розвинутому тваринництві практично повністю використовується на корм і підстилку та фактично є обов'язковою умовою утримання чисельного поголів'я. За відсутності тваринництва багаторічні трави не вирощують, а відходи рослинництва у вигляді соломи, стебел, гички можуть створювати додаткові труднощі технологічного характеру, пов'язані з їх утилізацією та зростаючими ризиками зниження врожайності наступних культур у випадку неправильного застосування відходів рослинництва на добриво. Результати багаторічних досліджень свідчать, що використання побічної продукції рослинництва у більшості випадків виявилося малоефективним і в сівозмінах без трав не забезпечує відтворення гумусного стану ґрунту. Однак її доповнення повним мінеральним удобренням 150-200 кг/га наближається до класичного поєднання гною і мінеральних добрив.

Ефективність рослинництва в межах агроекосистеми без залучення зовнішніх ресурсів, тобто без застосування мінеральних добрив, може суттєво підняти за рахунок оптимізації колообігу речовини в системі "сівозміна — селітебна зона". Досягається це – за наявності у приватному секторі значної кількості тварин, шляхом концентрації і вивезення органічних добрив з населених пунктів на поля. Одночасно вирішуються екологічні проблеми, оскільки скупчення тваринництва у приватному секторі і перерозподіл біогенних елементів з усього землекористування в селітебні території, супроводжується накопиченням в ґрунті присадибних ділянок до 2000 мг/кг рухомого фосфору, до 1000 обмінного калію, великої кількості важких металів та підвищенням концентрації нітратів в питній воді до рівня 2000 мг/л, що більш ніж у 40 разів перевищує гранично допустимий коефіцієнт.

Відомо, що реалізація готової продукції набагато вигідніше ніж продаж сировини. Однак слід розглянути інший позитивний аспект доповнення основної виробничої діяльності переробкою вихідної рослинницької і тваринницької продукції. Наприклад, при переробці зерна на борошно кількість відходів складає приблизно 40% вихідної маси. При цьому висівки, з одного боку, є цінним концентрованим кормом для тварин, з іншого — в них зосереджена значна кількість елементів живлення рослин. Так, якщо вміст азоту, фосфору і калію в 1 кг пшеничного борошна становить у середньому 19, З и 5 г, то у висівках — відповідно 21, 6 і 12 г. Отже при переробці 1000 т зерна, порівняно з його прямою реалізацією, з висівками у систему повертається понад 15 т елементів живлення, що в перерахунку на мінеральні добрива може бути еквівалентним 40-50 тис. грн. Це ж стосується насіння соняшнику, коренеплодів цукрових буряків, цільного молока та ін.

Важливе значення у підвищенні ефективності виробництва повинно приділятися забезпеченню "герметичності" колообігу біогенних елементів при їх рециркуляції. Наприклад, якщо стадо ВРХ нараховує 1000 голів, то накопичення свіжого гною за рік може сягнути 10 тис. т. Вміст загального азоту в ньому становить 0,45 %, або 45 т. Зберігання упродовж 4-х місяців в неущільненому стані супроводжується втратою 31 % цього елементу, а при щільній укладці —11%. Отже порушення технології зберігання такої кількості гною супроводжується втратою 10 т азоту, що прирівнюється майже до 30 т аміачної селітри. Зменшення кількості підстилки з 4 до 2 кг на 1 голову на добу в результаті 4-місячного зберігання гною призведе до недобору 14 т азоту, а заміна солом'яної різки (10 см) на неподріблену солому пов'язана з втратою 4 т цього елемента.

Таким чином, створення низки подібних замкнутих циклів на всіх етапах виробничої діяльності забезпечує суттєву економію антропогенних ресурсів, система набуває вищої сталості, конкурентоспроможності і, що особливо важливо, зростає її незалежність від зовнішніх факторів. Переконатися в цьому дозволяє аналіз деяких особливостей останніх двох років. Так у 2004 р. валовий збір зерна озимої пшениці склав 17,5 млн. т більша частина якого за якісними характеристиками виявилася нижче вимог 3-го класу. Ціни на ринку зерна, відповідно, склалися також невисокими. За таких умов в багатьох випадках було значно вигідніше замість прямої реалізації "трансформувати" зерно у тваринницьку продукцію. При рекордно високих закупівельних цінах на молоко і м'ясо у 2004 р. господарства з розвинутим тваринництвом, безперечно, опинилися у більш вигідному становищі, ніж при суто рослинницькій спеціалізації.

Навпаки, в екстремальному 2003 р., коли валовий збір зерна озимої пшениці склав лише 3,6 млн. т, за на явності розвинутої тваринницької галузі раціони годівлі можна було обмежити грубими і соковитими кормами, а всі надлишки зерна, безперечно, було вигідніше реалізувати за високими цінами в умовах гострого дефіциту насіннєвого матеріалу.

На відміну від суто рослинницької спеціалізації за рахунок вдосконалення галузевої структури господарства, окрім підвищення сталості й незалежності виробництва, також забезпечується систематичне збільшення родючості ґрунтів за рахунок поступового їх окультурення.

На даний час земельні ресурси України використовуються нераціонально. У процесі неконтрольованої виробничої діяльності відбувається їх інтенсивне виснаження, що вимагає відповідних регулюючих заходів з боку держави. Разом з тим аграрний сектор має високий потенціал виробництва поновлюваної енергії у вигляді рослинної біомаси, яка при раціональному використанні за своєю цінністю не поступається іншим енергоносіям. Реалізувати цей потенціал можна тільки через суб'єктів господарської діяльності шляхом раціонального використання природних і техногенних ресурсів в оптимальному їх поєднанні стосовно конкретних умов. Навіть при високому рівні підготовки керівників і персоналу самостійно вирішити задачу комплексної міжгалузевої оптимізації без спеціальних досліджень та багатоваріантного моделювання практично неможливо у зв'язку з багатофакторністю і складністю аграрних виробничих систем. В Інституті гідротехніки і меліорації УААН опрацьовується і вдосконалюється методологія та розробляються сучасні інформаційні технології комплексного формування екологобезпечного та конкурентоспроможного аграрного виробництва, які доцільно широко використовувати на практиці. [17]

3 Сучасний стан механізації кормовиробництва вУкраїні

3.1 Стан та перспективи розвитку кормовиробництва в Україні. Роль галузі в агропромисловому комплексі

Роль галузі кормовиробництва для нових агроформувань різних форм власності зростає: по-перше, забезпеченість кормами є лімітуючим фактором реалізації генетичного потенціалу продуктивності сільськогосподарських тварин і птиці, по-друге, з економічної точки зору корми є важливою статтею витрат у тваринництві. Так, за даними НІД кормів УААН, у 2007 році серед усіх матеріальних затрат, що увійшли в собівартість продукції сільськогосподарського виробництва в цілому, корми складали 3491,6 млн. грн., або 28,9%; в собівартості продукції тваринництва — 71,7%. Отже, від забезпечення кормами та їх якості залежить рівень продуктивності тваринництва та конкурентоспроможність продукції на ринку. Однак за даними Державного комітету статистики України, останніми роками дефіцит кормового білка становить 25-30%, що потребує нового підходу та суттєвих змін у формуванні кормової бази.

Багаторічними дослідженнями доведено, що у кормовиробництві відбуваються значні зміни структурного характеру. Так, за останні 16 років (від 1991 до 2007), за даними Держкомстату України, площі кормових культур в Україні зменшилися від 11,5 до 7,1 млн. га, відповідно частка їх у загальній посівній площі сільськогосподарських культур зменшилась від 36,1 до 25,9%. При цьому в 1991-1996 роках зазначений показник характеризувався стабільністю і, наприклад, у 1994 році становив 38,3%, а потім (1997-2000 рр.) різко зменшився, зокрема у Лісостепу на 25%. Останніми роками в Україні значними темпами відроджує галузі тваринництва — зростає значення нарощування обсягів виробництва кормів та поліпшення їх якості. [9]

Загальна площа земельних ресурсів України становить 60 млн. 354 тис. га, у тому числі сільськогосподарських угідь — 41 млн. 817 тис. га, серед яких: орні землі — 32 млн. 537 тис. га, сіножаті — 2 млн. 407 тис. га, пасовища — 4 млн. 523 тис. га. Структуру сільськогосподарських угідь станом на 01.01.2008 р. наведено на рис. 6.1.

За даними науково-дослідних установ України, вирішальну роль у збільшенні обсягів виробництва різних видів повноцінних кормів повинне відігравати польове кормовиробництво, одним із ресурсів інтенсифікації якого є оптимізація посівних площ кормових культур. Поліпшення структури посівних останніх повинне спрямовуватись на розширення площ бобових трав у кормовій групі до 50%. Належну увагу слід приділяти впровадженню бобових та бобово-злакових сумішок, адаптованих до конкретних грунтово-кліматичних умов. Рекомендується впроваджувати люцерну посівну як найменш енергозатратну високопродуктивну білкову культуру в усіх сівозмінах: кормових, ґрунтозахисних, польових і на запільних ділянках. На землях із близьким рівнем залягання ґрунтових вод та підвищеною кислотністю доцільно висівати конюшину та конюшино-злакові сумішки. На еродованих та схилових ґрунтах ефективними будуть посіви еспарцету, який за невибагливістю до родючості ґрунту та посухостійкістю значно переважає люцерну і конюшину.

Для стабільного виробництва кормів та поліпшення їх якості важливо розширювати площі проміжних озимих культур та їх сумішок — жита і тритікале з викою та озимими капустяними. Такий посів забезпечує високі продуктивність та якість корму за рахунок збільшення збору кормових одиниць та перетравного протеїну. Належну увагу слід приділяти і поукісним посівам, котрі дозволяють ефективніше використовувати кормову площу. Вони не лише забезпечують тварин високоякісним зеленим кормом, але й є основою для створення сировинного конвеєру для заготівлі консервованих кормів. Значним резервом, у цьому аспекті, є використання однорічних зернобобових культур: сої, гороху, кормових бобів. Цінність їх в агротехнічному значенні та в тому, що вони дозволяють збалансувати концентровані корми за протеїном та незамінними амінокислотами. [17]

У 2008 році було вироблено 23,8 млн. т кормових одиниць, що порівняно з 1990-му удвічі менше. Основними чинниками спаду виробництва кормів в Україні слід вважати недосконалу структуру посівних площ кормових культур, яка не відповідає оптимальній як в цілому по Україні, так і в різних її грунтово-кліматичних регіонах. Винятком є площі посіву кукурудзи на силос і зелений корм, які займають 30%. Близькими до оптимальних є посіви багаторічних трав, які становлять у кормовій групі 40%, тоді як за науково обґрунтованою нормою повинні становити 50.

Суттєвим недоліком у роботі галузі є використання старовікових посівів багаторічних трав, зменшення площ яких дозволить істотно поліпшити роботу галузі. Старовікові посіви багаторічних трав із строком використання 5 і більше років займають в Україні 18%, що є причиною зниження урожайності зеленої маси багаторічних трав порівняно з 1990 р. майже вдвічі та заготівлі сіна в обсязі 25-48 % від потреби. Важливим резервом у цьому напрямі є розробка заходів щодо зменшення дефіциту насіння багаторічних трав, який негативно позначається на роботі як польового, так і лучного кормовиробництва. Наслідком цього стало скорочення обсягів проведення робіт із докорінного та поверхневого поліпшення, які, перш за все, залежать від кількісного і видового складу насіння багаторічних трав. Дані стосовно обсягів площ поверхневого і докорінного поліпшення луків наведенні в таблиці 3.1.

Обсяги площ поверхневого і докорінного поліпшення луків

Рік

Докорінне поліпшення

Поверхневе поліпшення

У тому числі з підсівом трав

2004

249

903

255

2005

209

791

194

2006

130

698

122

2007

136

670

117

Незважаючи на те, що виробництво кормів на луках і пасовищах є найменш затратним, у господарствах України воно складає лише 5% усього валового надходження, тоді як у країнах Європи — 45-50%. У зв’язку з цим в Україні прийнята урядова програма вилучення з інтенсивного обробітку 10 млн. га орних земель, 900 тис. га розораних і сильно еродованих схилів та переведення їх під заліснення й залуження. Тому найближчими роками слід спрямувати всі можливі заходи на здешевлення та збільшення обсягів виробництва кормів у достатньому асортименті та високої якості, що дозволить забезпечити 40-45 ц к. од. на 1 умовну голову на рік.

3.2 Впровадження елементів нових енерго- та ресурсозберігаючих технологій при виготовленні консервованих, грубих і концентрованих кормів

Важливе місце в інтенсифікації кормовиробництва займає заготівля в достатній кількості високопоживного силосу. При застосуванні традиційних технологій приготування силосу втрати поживних речовин у процесі ферментації досягають 15-45 %. Згодовування неякісного силосу негативно впливає на здоров’я тварин та призводить до додаткових втрат 10-15 % готового корму у вигляді нез’їдених решток.

Заготівля силосу залежить від цілого ряду факторів правильне керування якими є гарантом його якості. Силосування — це складний біохімічний процес перетворення свіжої рослинної сировини на консервовану на основі молочнокислого бродіння. Основними видами молочнокислих бактерій за фізіологічними властивостями є гомоферментативні (типові) та гетероферментативні (нетипові). Перший вид розщеплює гексозу до утворення лише молочної кислоти, другий — до утворення окрім молочної низки інших продуктів.

Біологічні основи силосування полягають у спрямуванні процесів консервування в бік розвитку корисної мікрофлори та виключення дії шкідливих мікроорганізмів, які погіршують якість силосу. Свіжоскошена рослинна сировина має велику кількість різноманітних мікроорганізмів. [17]

Найвідповідальнішим етапом силосування є початковий — етап розвитку змішаної мікрофлори, коли всі корисні та шкідливі мікроорганізми готові вступити в дію при вивільненні клітинного соку з вмістом цукрів у ньому вже при першому ущільненні рослинної сировини. [15]

Найшкідливішими є плісняві гриби та аеробні бактерії, що викликають значне нагрівання маси та швидко псують її, проте головною умовою їхньої життєдіяльності є наявність кисню в середовищі. Зважаючи на те, що молочнокислі бактерії розвиваються як у кисневому, так і в безкисневому середовищі, силосну масу відразу після закладання в траншею починають ущільнювати. Отже, плісняві гриби в силосі зберігаються недовго, адже вони добре переносять кисле середовище, проте є аеробами. Якщо затриматися з ущільненням силосної маси, то за умов доступу повітря плісняві гриби розмножуються і використовують молочну та інші органічні кислоти. Це спричиняє підвищення кислотності та створює сприятливі умови для розвитку спорових форм мікроорганізмів — маслянокислих бактерій та амоніфікаторів, внаслідок чого корм псується і стає не придатним для згодовування. [18]

При силосуванні різних кормових культур необхідний відповідний рівень підкислення корму (рН 4,0-4,2), який досягається за певної величини цукрового мінімуму за якого виключається дія небажаних мікробіологічних процесів. Водночас це залежить від показника буферності, під яким розуміється здатність протидіяти зміні реакції рН при додаванні кислот чи лугу. У свою чергу буферна дія рослин залежить від концентрації в них білків, амінокислот, лужних солей, органічних кислот та інших речовин, які мають властивості буферів, що регулюють реакцію середовища. Що вищий вміст в рослинах білків (протеїну) чи інших буферних речовин, то більше потрібно кислот, щоб силос став достатньо кислим. Це пояснює те, чому рослини з великою буферною місткістю повинні мати і значну кількість цукрів. Ціла низка досліджень показала, що вміст протеїну в рослинах, як правило, обернено пропорційний вмістові цукрів, і навпаки. Саме тому бобові культури, порівняно із злаковими, силосуються погано. Отже, відношення вмісту цукрів до буферності характеризує ступінь силосованості корму. Для високоякісної рослинної сировини, що силосується, відношення цукрів до буферності має бути більшим за 3, а цукрів до протеїну — більшим за 1.

Знання придатності рослин для силосування допомагає конкретизувати практичні заходи нормування та комбінування різних сумішей із рослин, що легко та важко силосуються, і тих, що не силосуються зовсім, та добирати найдоцільніші консерванти для одержання якісного силосу.

Наукові основи силосування, в основу яких покладено теорію цукрового мінімуму, розроблені вченим А.А. Зубріліним. Цукровий мінімум — це та мінімальна кількість цукрів, яка необхідна для утворення такої кількості молочної кислоти, яка забезпечує зміщення показника рН до межі 4,0-4,2, при якій зелена маса добре консервується, а шкідлива мікрофлора практично не діє. Залежно від співвідношення фактичного вмісту цукру і його необхідного мінімуму всі рослини (за А.А. Зубріліним) згруповано в три основні групи: ті, що легко силосуються; ті, що важко силосуються і ті, що не силосуються. [17]

Легко силосуються рослини, у яких вміст цукрів в 1,7 разу більший за ту мінімальну кількість, яка необхідна для забезпечення оптимальної кислотності. У групу рослин, що важко силосуються, входять ті, в яких величина цукрового мінімуму перевищує фактичний вміст цукру, але наближена до мінімальної його кількості. До тих, що не силосуються, належать рослини, вміст цукрів яких не достатній для створення оптимального кислотного середовища.

Важливим фактором, який впливає на якість силосу, є вологість маси, що силосується. Життєдіяльність бактерій, в першу чергу гнильних і маслянокислих, стримується сухістю середовища. При вологості 65-70% більшість силосних культур добре силосуються, за виключенням зеленої маси із молодих трав з високим вмістом протеїну ( люцерна, еспарцет, соя та інші). Втрати при силосуванні таких культур невеликі і не перевищують 10%.

Пропорційно збільшенню вологості підсилюється дія шкідливих мікроорганізмів і відповідно зростають втрати від так званого “угару маси”, тобто розкладу поживних речовин бактеріями до газоподібних речовин.

В зеленій масі вологістю 70-65% вміст цукрів повинен бути таким, щоб при переробці його молочнокислими бактеріями на молочну кислоту не створювалось середовище з показником рН 4,2. Саме ця кислотність є межею, за якою виключається дія гнильних і маслянокислих бактерій та забезпечується добра збереженість силосної маси. [9]

При силосуванні зеленої маси вологістю 70-75% втрати поживних речовин зростають до 11-14 %. В окремих випадках, які як правило зумовлюються або дощовими періодами літа під час заготівлі силосу, або особливостями культур (наприклад Борщівники) вологість маси може становити 75 і більше відсотків. Подрібнена силосна маса таких культур легко віддає клітинний сік з цукрами під час ущільнення, водночас починаються бурхливі мікробіологічні процеси. Втрати сухих речовин від “угару” становлять 15-20% і крім цього 4-5% сухої речовини втрачається з соком, який витікає на дно траншеї. Недоліком є й те, що силос із високовологої маси одержують перекисленим (якщо в сировині достатньо цукрів), що супроводжується до всього ще й спиртовим бродінням за рахунок дії дріжджів.

Слід відмітити, що підвищення вмісту сухих речовин в масі, що силосується, — шлях до зниження втрат та поліпшення якості силосу.

Вологість вихідної сировини регулюють фазою розвитку культур (строком збирання), ступенем подрібнення зеленої маси, додаванням сухих (грубих) кормів, підв’яленням маси. Якість силосу, збір поживних речовин з гектару посіву кормових культур багато в чому залежать від строку збирання культур на силос.

Регулювання мікробіологічних процесів та вологості сировини при силосуванні можливе і за рахунок величини подрібнення зеленої маси. Залежно від вихідної вологості сировини довжина частинок рослин повинна бути різною. Слід дотримуватися загального правила: із зростанням вологості сировини збільшується величина рослинних частинок

Чим менші частинки сировини з підвищеною вологістю, тим швидше при ущільненні маси вивільняється клітинний сік та зростають втрати поживних речовин, що викликає погіршення якості силосу. Для поліпшення якості силосу із багаторічних трав доцільно застосовувати попереднє підв’ялення зеленої маси в полі, тобто йдеться про заготівлю силосу із пров’ялених трав. Не менш ефективним є так зване хімічне консервування, котре ґрунтується на застосуванні різних видів консервантів.

Використання консервантів визнано ефективним способом заготівлі соковитих кормів, який дає змогу у 2-3 рази зменшити втрати врожаю кормових культур (особливо у процесі збирання й силосування їх у періоди з нетиповими погодно-кліматичними умовами) та забезпечити високу якість кормів. За рахунок використання консервантів досягається підвищення виходу кормів на рік до 15-20 % порівняно із звичайним силосуванням. Один кілограм будь-якого консерванту в середньому додатково забезпечує збереження в силосі близько 10 к. о. та 1 кг протеїну, за рахунок яких можна додатково одержати 6-10 кг молока або 1,5-2 кг приросту живої маси тварин.

За характером дії на мікрофлору та сировину, консерванти бувають біологічні та хімічні. Хімічні консерванти в свою чергу поділяють на: мінеральні кислоти, їх солі та суміші кислот і солей; органічні кислоти, їх солі, ефіри, аміди; аміак і речовини, що розкладаються з виділенням аміаку (карбонат і бікарбонат амонію). Найперспективнішими і дешевими є біологічні консерванти, а з хімічних — органічні кислоти, які мають бактерицидні та фунгіцидні властивості. До цієї групи хімічних консервантів належать мурашина, бензойна, пропіонова, оцтова кислоти та їх суміші, метабісульфіт (піросульфіт) натрію.

Важливим резервом одержання якісного силосу є зменшення втрат під час ферментації, які можуть досягати 10-15 і більше відсотків. До заготівлі силосу слід ретельно готуватися, тобто, перш за все підготувати техніку, щоб не сталося як, що силосну яму завантажують протягом 2-3 а то й більше тижнів. Оптимальний строк завантаження силосної траншеї 5 днів. Збирання кукурудзи чи іншої силосної культури повинне проводитися в стислі строки, на сучасних комбайнах з якісним подрібненням сировини.

На жаль, більшість господарств у сучасних умовах заготівлю силосу проводять довго, тому строки заготівлі затягуються. Отже, слід зважити на сам процес завантаження траншей. Перед завантаженням силосних траншей їх очищають, на дно кладуть шар соломи завтовшки 30-50 см. Завантаження силосної маси розпочинають з торцевої сторони, протилежної до майданчика завантаження. Транспортні засоби повинні розвантажуватися на майданчику, потім маса, що силосується, подається в траншею бульдозерами. Це запобігає забрудненню маси землею, яка зв’язує багато кислот, в результаті чого уповільнюється підкислення сировини. [17]

Від самого початку завантаження траншеї укладену масу ущільнюють для забезпечення швидкого створення анаеробних умов та раціонального використання ємності силосної споруди. Якщо зелена маса, що силосується, має вологість до 75%, її безперервно ущільнюють від початку заготівлі до кінця завантаження силосної траншеї. Після завершення силосування силосну масу необхідно щоденно додатково ущільнювати протягом не менше 3-4 годин, особливо слід звертати увагу на ущільнення маси біля стін траншеї. Якщо закладена силосна маса має підвищену вологість (в межах 80% і більше), то вона не потребує додаткового ущільнення, що запобігає втратам клітинного соку. Завантаження силосної маси в траншеї проводять під ухилом, завдяки чому вона якомога менше піддається ферментації. Такий метод заготівлі силосу запроваджений у Англії, США та Німеччині.

З метою зменшення втрат поживних речовин після завершення процесів закладання поверхню силосу слід ретельно ізолювати від зовнішнього середовища з використанням повітря- і водонепроникної плівок. В практиці силосування використовують в основному поліетиленові світлонепроникні плівки завтовшки 0.15 — 0.20 мм. Плівки такої товщини не рвуться при вкриванні силосу, стійкі до дії прямих сонячних променів і низьких температур. Економічно доцільними є широкоформатні плівки з шириною 8-12 м. При їх використанні зменшуються затрати праці на вкриття силосу і досягається кращий захист силосної маси від доступу повітря. Такі полотна плівок недоцільно перекривати накладанням краю однієї на край другої: доцільніше склеїти їх клейкими плівками або наплавити та якісно закріпити біля стін траншеї. Для цього дерев’яною лопатою плівку закладають між стіною траншеї та масою сировини, а місце з’єднання засипають ґрунтом і ущільнюють. Плівку присипають по всій поверхні шаром глинистого ґрунту завтовшки 8-10 см, тирсою чи торфом — 20-25 см; зверху прикладають тюками соломи. Проте більш якісне укриття силосу досягається при використанні мішків з піском, що запобігає псуванню поверхні плівки гризунами та гарантує якісну ізоляцію та зберігання маси від промерзання взимку. Для захисту плівки від пошкодження гризунами її поверхню присипають негашеним вапном шаром до 2 см.

Важливим фактором впливу на збереження якості заготовленого силосу є правильне його використання, при чому потрібно розраховувати її тижневу потребу для поголів’я тварин в господарстві, що запобігатиме повторній ферментації корму. Доцільно виймати шар силосу завдовжки 1,5-2,0 м, що забезпечить мінімальне потрапляє повітря в силосну масу. Покриття траншеї знімають бульдозерами поступово на розраховану величину тижневої потреби. При вивантаженні силосу, щоб не порушити монолітності основної маси, використовують спеціальні ножі, якими відрізають розрахований шар по всій ширині і висоті траншеї. Край зрізу вкривають соломою і плівкою.

В умовах України є можливість одержати силос доброї якості та високої поживності для молочних корів із суміші зеленої маси кукурудзи й люцерни у співвідношенні 1:1 з обов’язковим дотриманням фази збирання: кукурудзи — у фазі початку воскової стиглості зерна (пізня тістоподібна стадія, або стадія “м’якого сиру”), люцерни — у період накопичення високого вмісту протеїну (фаза початку цвітіння люцерни).

Отже, силосування — це простий і надійний спосіб консервування зелених рослин, який порівняно з іншими способами менше залежить від погодних умов. При правильному доборі сировини, використанні сучасної високопродуктивної техніки, дотриманні вимог технології заготівлі та зберігання створюються всі передумови для одержання високоякісного корму. [17]

В інституті кормів УААН розроблена технологія виробництва силосу з підв’яленої маси суміші вики ярої, вівса та гірчиці білої. Роль гірчиці білої за такої технології розширюється, тому що вона не тільки використовується як підтримуюча високобілкова культура, а й слугує біологічним консервантом.

Сінаж — це вид корму, в основі консервування якого лежить “фізіологічна сухість середовища”, тобто така вологість сировини, при якій вода рослинних клітин стає недоступною для різних рас мікроорганізмів, чим сінаж відрізняється від силосу, консервуючою основою якого є процес молочнокислого бродіння.

Теоретичні основи сінажування зелених рослин вперше обґрунтував професор С.Я. Зафрен. Основні наукові розробки щодо заготівлі сінажу проведені на початку 30-х рр. ХХ ст., коли у Всесоюзному науково-дослідному інституті кормів ученим А.М. Міхіним було встановлено, що підв’ялена до вологості 50-55% зелена маса добре зберігається у сховищах, незважаючи на те, що в ній практично не утворюється молочна кислота, яка підкислювала б середовище і консервувала масу.

Попередні твердження стосовно причин збереженості сінажу за такої вологості зумовлено сисною силою мікроорганізмів. Згідно з цією теорією, зелена маса певної вологості, за умов герметизації сховища, зберігалася завдяки здатності рослинних клітини утримувати вологу з більшою силою, ніж сисна сила клітин мікроорганізмів, за винятком пліснявих грибів, сисна сила яких досягає 220-230 атм. (кгс/см2). Відомо, що плісняві гриби — аероби, тому в анаеробних умовах, створених шляхом ущільнення зеленої маси та її герметизації, їх дія припиняється.

Отже, фізіологічна сухість середовища — це рівновага між сисною силою мікроорганізмів та водоутримувальною силою рослинних клітин. Вона досягається саме при вологості зеленої маси в межах 55-60%.

Сінаж має ряд переваг порівняно з силосом: насамперед він значно кращий за смаковими якостями. Поживність 1 кг сінажу 0,3-0,4 к. од., вміст перетравного протеїну — 50-55 г, каротину — 35-40 мг, кальцію — понад 5 г, до 1 г фосфору. Сінаж, на відміну від силосу, — прісний корм, з показником рН 4,8-5,3, що містить удвічі більше сухих речовин та має краще цукро-протеїнове співвідношення, що сприятливо позначається на розвитку мікрофлори рубця, забезпечує хороше травлення і добре засвоєння тваринами поживних речовин корму. [9]

Якість сінажу, на відміну від сіна, менше залежить від погодних умов, що на підв’ялення маси витрачається в 3-4 рази менше часу. Це створює можливість зменшити втрати поживних речовин за рахунок фізіологічних та біохімічних процесів, які протікають у скошених рослинах. На якість сінажу впливає ціла низка факторів: добір сировини, строки скошування кормових рослин, час скошування протягом доби, тривалість перебування скошеної зеленої маси в полі, своєчасне підняття підв’яленої маси з валків, ступінь подрібнення рослин, якісне ущільнення зеленої маси та ізоляція від зовнішнього середовища.

До переваг сінажу належить і те, що він не промерзає у сінажних спорудах, завдяки чому заготівля корму за цією технологією порушується в північні регіони.

Висока якість і добра збереженість сінажу досягаються за умов дотримання технологічної дисципліни в процесі заготівлі. Основними операціями при сінажуванні є: скошування кормових рослин з одночасним плющенням; швидке підв’ялення зеленої маси; підбирання підв’яленої маси з одночасним подрібненням та завантаженням у транспортні засоби; транспортування; завантаження траншеї; ущільнення та ізоляція сінажу від доступу повітря.

Важливим фактором, який впливає на якість сінажу, є добір сировини. Найкращою сировиною для заготівлі сінажу є однорічні та багаторічні бобові, злакові та бобово-злакові травостої.

Скошування багаторічних трав для заготівлі сінажу, на відміну від звичайного збирання на сіно, проводять не пізніше початку бутонізації бобових та початку колосіння злакових компонентів. Це дає змогу одержати із багаторічних трав корм, за загальною протеїновою поживністю сухої речовини такий, що мало відрізняється від трави доброго пасовища та є кращим за сіно. Скошування рослин в ранні фази вегетації вигідне ще й тим, що дає змогу одержати повноцінніший другий укіс трав, і, як результат, більший загальний збір перетравних поживних речовин, особливо протеїну. Запізнення із збиранням трав, особливо у вологозабезпеченні роки, призводить також до вилягання рослин, що погіршує їх скошування і нерідко призводить до недобору сухих речовин.

Однорічні бобово-злакові сумішки, на відміну від багаторічних трав, треба скошувати у пізні фази вегетації. Це пов’язано з тим, що в міру розвитку горохо-вівсяних, вико-вівсяних та інших сумішок вміст сухих поживних речовин не знижується.

Важливим фактором, який впливає на якість сінажу, є час скошування кормових рослин протягом доби. Косити трави краще рано-вранці, що забезпечує можливість закладання зеленої маси для заготівлі сінажу уже в другій половині дня. Крім того, рослини в ці години доби мають значно вищий вміст каротину, продихи їх ще відкриті, що сприяє випаровуванню вологи. Оптимальний час скошування трав — з 5-ї до 10-ї години ранку.

Не менш важливим є зведення до мінімуму тривалості перебування скошеної зеленої маси рослин в полі під час підв’ялення. З цією метою для скошування бобових та бобово-злакових травостоїв використовують косарки-плющилки, при скошуванні якими досягається рівномірне зниження вологості сировини, що забезпечує збереження листків та суцвіть від пересихання та обламування під час підняття маси з валків і в 2-3 рази прискорюється процес підв’ялення.

Плющення бобових трав та їхніх сумішок зі злаковими компонентами проводять у фазі масового цвітіння бобових трав. Проводити плющення у пізніші фази розвитку бобових та злакових трав недоцільно, оскільки швидкість випаровування вологи зі стебел та листків у цей час в них практично однакова.

Підв’ялені протягом 2-3 діб трави втрачають 30-45% каротину, проте вміст його в рослинах залишається на рівні 130-150 мг на 1 кг сухої речовини, що є цілком достатнім для повного забезпечення потреб тварин. Низкою наукових установ встановлено, що за недотримання умов оптимальної вологості маси люцерни (60%) одержують не сінаж, а силос низької якості. При підв’яленні скошеної маси до вологості нижче 45% осипання листків і бутонів досягає 25-30%, втрати при підбиранні й транспортуванні маси — 35-40%. Ущільнення такої маси незадовільне, вона зігрівається і псується.

Важливим моментом у заготівлі сінажу є своєчасне підбирання зеленої маси з валків, яке потрібно розпочинати при вологості 55-60%, тому що при підніманні й транспортуванні її до сінажосховищ вологість знижується на 7-11%. Оптимальну вологість маси для її підбирання з валків можна встановити органолептичним методом. За оптимальної вологості маси листки ще м’які, на траві під час її скручування ледь помітно виступає волога.

Якість сінажу значною мірою залежить від ступеня подрібнення рослин, який за вимогами Держстандарту повинен становити 3-4 см (не менше 80% від загальної маси). При закладанні маси в сінажні башти величина частинок має бути до 2 см. Це пов’язане з тим, що в баштах у процесі їх завантаження відбувається самоущільнення маси.

Розподіл маси в траншеях доцільно проводити під нахилом (за таким методом консервовані корми заготовляють у розвинених країнах світу). Для зменшення втрат поживних речовин після завершення процесів закладання сінажу масу ретельно ізолюють від зовнішнього середовища з використанням повітряно- і водонепроникної плівок. У практиці сінажування використовують переважно поліетиленові плівки завтовшки 0,15-0,20 мм., які не рвуться під час укривання сінажу. Найкращими для цієї мети є світлонепроникні плівки. Вони стійкі до дії прямих сонячних променів і низьких температур. Економічно доцільними є широкоформатні плівки завширшки 8-12 м. Завдяки їх використанню зменшуються затрати праці на укриття маси сінажу і досягається кращий її захист від доступу повітря. Такі полотна плівок недоцільно перекривати (накладаючи край однієї на край другої), їх треба склеювати клейкими плівками або заплавлювати, а також ретельно закріпляти біля стін траншей. Проте більш якісного укриття можна досягти, використавши мішки з піском, що забезпечує якісну ізоляцію, дає змогу запобігти промерзанню сінажної маси взимку і виключає псування поверхні гризунами.

До грубих кормів належать сіно, солома, полова, стрижні кукурудзяних качанів, гілковий корм.

Сіно є основним видом грубого корму в стійловий період. На частку якісного сіна в раціоні кормів припадає 25 % кормових одиниць, 30 % протеїну. При збиранні трав на сіно потрібно керуватися певними теоретично-господарськими обґрунтуваннями, які полягають у: правильному визначенні строку скошування трав на сіно: тонконогові (злакові) трави косити у фазі “початок колосіння-колосіння”; бобові — “бутонізація-початок цвітіння”, різнотрав’я — “масове цвітіння”. Особливе значення має якісне своєчасне збирання сіна у першому укосі, тому що від цього залежать урожай отави (другий та третій укоси) і продуктивне довголіття сіножатей;

дотриманні оптимальної висоти зрізання трав, що впливає на валовий вихід сіна в сумі за всі укоси, його якість та наступну урожайність травостою. На сіножатях із сіяними однорічними і багаторічними травами рекомендується зрізати трави на висоту 5-6 см. Травостої, призначені на насіння та трави першого року використання скошують вище — на висоті 8-9 см, отаву останнього укосу — на висоті 6-7 см; природні степові сіножаті — 4-5 см;

науковому обґрунтуванні та правильному виборі технології заготівлі сіна стосовно умов господарства;

доборі комплекту сільськогосподарських машин і механізмів для якісного і своєчасного проведення усіх технологічних операцій стосовно обраної технології.

На сучасному етапі розвитку кормовиробництва застосовують три основних види заготовленого сіна: розсипне, пресоване та подрібнене.

Розсипне сіно. Сінокісні ділянки перед початком збирання трав на сіно оглядають та складають їх опис: вказують рельєф окремих ділянок, їх конфігурацію, фазу розвитку трав та врожайність. Ділянки попередньо розбивають на загінки площею, яка може бути скошена за 1, рідше — 2 дні, довжина яких у 5-6 разів більша за ширину. На сіяних сіножатях напрям руху косарок повинен співпадати з напрямом оранки, на природних — з напрямами довжини загінки, на схилі — впоперек його.

Для скошування трав застосовують косарки. Вибір їх марки залежить від ряду чинників. Так, високоврожайні травостої доцільно скошувати начіпними косарками КС-2,1, на великих вирівняних площах трави краще косити, застосовуючи широкозахватні агрегати з косарками КТП-6, КДП-4; на невеликих (до 20 га) — однобрусні косарки КРН-2,1 та КС-2,1.

Найчастіше застосовують гоновий спосіб руху агрегатів, рідше — круговий. При застосуванні агрегатів із фронтальним розміщенням різального апарату найкраще використати човниковий спосіб. Всі механізми косарок повинні бути правильно відрегульовані, ножі — гострими.

Якість сіна та його збалансованість за поживними речовинами залежать від тривалості перебування скошеної трави у полі, тобто від швидкості сушіння. Для прискорення сушіння трави у полі застосовують ворушіння маси у покосах. Особливе значення ця технологічна операція має на високоврожайних травостоях (шар завтовшки 25 см і більше) та у вологу погоду. Перше ворушіння проводять відразу за скошуванням, наступні — через кожні 2-3 години. При виконанні цієї операції необхідно ретельно стежити за вологістю маси, проводити ворушіння лише при її вологості вище 40-45 %, що запобігатиме втраті найбільш цінних частин рослини — суцвіть та листків. Для прискорення процесу сушіння використовують плющення трав, яке проводять одночасно із скошуванням за допомогою косарки-плющилки КПВ-3 або КПУ-2,4 при відключеному подрібнювачі. Плющена маса рівномірніше і швидше висихає, з неї інтенсивніше випаровується волога, що зменшує втрати каротину на 15-20 %.

Цю операцію потрібно проводити вранці або пізно ввечері, коли маса злегка зволожиться, найкраще при вологості 30-35%. На півдні, при врожайності сіна до 20 ц/га, траву у валки згрібають одночасно із скошуванням. Для згрібання застосовують тракторні граблі ГП-14, ГПП-6, ГТП-6, ГВК-6 та іноземного виробництва Е-247/249. Сіно краще згрібати колісно-пальцевими граблями ГВК-6, пам’ятаючи, що за врожайності сіна 50 ц/га і вищій робота грабель ГВК-6 ускладнюється. Для покращення провітрювання валків потрібно використовувати лише одну секцію грабель, яка з 3-метрових покосів утворює один валок. Для кращого просихання маси валки повинні бути вирівняними з таким розрахунком, щоб маса одного погонного метра не перевищувала 2,5 кг. На великих, менш урожайних площах доцільно використовувати поперечні граблі.

При вологості 28-32 % трав’яну масу складають у копиці підбирачем-копнувачем ПК-1,6А об’ємом 13 м3. До місця скиртування сіно транспортують копицевозами КНУ-11, КУН-10, тракторними причепами 2ПТС-4, скиртоутворювачами СПТ-60 і скиртовозами СП-60 або стягують волокушами. Тракторні причепи і автомобілі обладнують нарощеними бортами і використовують при відстані транспортування не більше 3 км.

Для скиртування і навантажування сіна можна використовувати скиртоклад СНУ-0,5 або навантажувач ПФ-0,5. Скиртують сіно на підвищених відкритих майданчиках. Скирта повинна мати довжину 20-30 м, ширину 5,0-5,5 та висоту 6 м. Під її основу вистилають шар соломи завтовшки 30-35 см, завершують шаром до 1 м. Скирти розміщують торцем до пануючого напрямку вітрів, огороджують і обкопують канавками для відведення дощової води.

Зберігають сіно також у сховищах різного типу, використовуючи для завантаження укладач УМГ-5.

Процес заготівлі сіна складається із послідовних технологічних операцій: скошування > ворушіння > згрібання у валок > перевертання валків > копнування > транспортування > скиртування. Для їх здійснення застосовують комплекс машин: КПВ-3,0; ГВК-6; ПК-1,6 А; КУН -10;СНУ-0,5.

Пресоване сіно має такі переваги над розсипним:

скорочується кількість операцій (відпадає потреба у ворушінні, згрібанні маси у валок, копнуванні тощо);

зменшується тривалість перебування маси у полі;

знижуються втрати листків, суцвіть, поживних речовин і каротину;

скорочуються механічні втрати при транспортуванні та розвантаженні (на 10-15 %);

знижуються собівартість корму та затрати праці на збиранні і транспортуванні (в 1,0-1,5 рази);

потреба у сховищах зменшується у 2,0-2,5 разу;

полегшуються процеси обліку та нормування сіна при згодовуванні;

поліпшуються санітарні умови праці тваринників на фермах.

Рекомендується проводити пресування маси із валків при вологості 25-27% до щільності 130-150 кг/м3.

Пресування проводять із валків прес-підберачами ПС-1,6; ПСБ-1,6, К-453 та К-442. Основна вимога для їх раціональної роботи полягає у тому, щоб маса 1 м погонного валка не перевищувала 3,0-3,5 кг, а ширина — 1,4 м. Для дотримання цих вимог ширину валка регулюють під час згрібання сіна. Недоцільно при такій технології заготівлі сіна використовувати поперечні граблі, оскільки вони утворюють не рівні за шириною та прямолінійністю валки, що призводить до втрат сіна.

Кращий час для пресування — вечір або ранок, коли трава волога. За вологістю маси потрібно ретельно слідкувати — якщо вона не вища за 20%, тюки одночасно завантажують у тракторний причіп, начеплений за прес-підбирачем. У хорошу погоду тюки з вологістю понад 20% досушують протягом 1-2 днів у полі. Підбирання і укладання тюків у штабелі здійснюють підбирачем-укладачем ГУТ-2,5 в агрегаті з трактором МТЗ-80. Штабелі підбирають і транспортують транспортувачем тюкових штабелів ТШН-2,5, який встановлюють на автомобілях замість самоскидного кузова. Штабелі тюків можна зберігати на відкритих майданчиках, в приміщеннях (горищах корівників) або в сіносховищах. При складанні тюків використовують транспортер-навантажувач ТН-4.

Заготівля подрібненого сіна передбачає: скорочення затрат праці та коштів на заготівлю; створення можливостей для механізованого використання всіх технологічних операцій при заготівлі корму; механізацію процесу дозування корму. Заготівля подрібненого сіна ґрунтується на такій послідовності виконання технологічних операцій та укладання маси у валки:

скошування з одночасним плющенням косарками-плющилками КПІ-Ф-30;

підбирання пров’яленої маси з валків з одночасним подрібненням і завантаженням у транспортні засоби за допомогою підбирачів-подрібнювачів КУФ-1,8, комбайну Е-280 при подрібнені стебел рослин на частки завдовжки 8-15 см;

транспортування подрібненої маси до місць досушування та зберігання транспортними причепами 2ПТС-4; ПТЕ-12А та пристосованими для цього автомобілями;

досушування та зберігання подрібненого сіна у спеціальних сховищах і баштах;

завантаження маси у сховища пневматичними транспортерами;

поступове досушування сіна активним вентилюванням при пошаровому його завантаженні у сховище. Перший шар закладають висотою 2,0-2,5 м і доводять до вологості 20%, після чого укладають та досушують наступний шар сіна;

для досушування подрібненої маси застосовують і підігріте повітря, використовуючи різні повітропідігрівники (ВПТ-600). Через 5-6 днів після закінчення досушування перевіряють готовність сіна: вентилювання продовжують якщо повітря в скирті тепліше за навколишнє.

4 Розрахунок рекомендованих енергозберігаючих технологій заготівлі і зберігання кормів в СТОВ «Глуховецьке» Козятинського району Вінницької області

4.1 Розрахунок рекомендованих енергозберігаючих технологій заготівлі і зберігання сіна

Заготівлі сіна з люцерни належить важливе місце у створенні міцної кормової бази для тварин. Адже саме це сіно містить найбільше протеїну, до складу якого входять майже всі незамінні амінокислоти, багато мінеральних речовин і вітамінів. Тому воно є бажаним, а для частини тварин і незамінним компонентом раціонів. Проте через біологічні особливості люцерни приготування сіна з неї супроводжується значними втратами найпоживнішої частини рослини — листя й суцвіть, що — істотно позначається на загальній поживності сіна та вмісті протеїну в ньому. Численні дослідження, проведені в нашій та зарубіжних країнах, свідчать, що ці втрати можна значно зменшити шляхом раціональної обробки скошеної маси у процесі польового сушіння. Заготівля сіна є одним із найпоширеніших способів консервування трав і являє собою складний фізіолого-біохімічний процес, який грунтується на висушуванні трави до вологості 17–18%, що виключає розвиток не лише бактерій, а й пліснявих грибів.

Основною метою, що передбачає застосування різних технологічних прийомів при заготівлі сіна, є зниження механічних втрат, що сягають до 10%, а також тих, які викликані біологічними процесами, що відбуваються у траві при висиханні.

Відомо, що у люцерни, як і в більшості трав, приріст вегетативної маси з початку цвітіння проходить за рахунок стебел і суцвіть. Через те, що листя містить у 2–3 рази більше поживних речовин і в 10–15 разів більше каротину, ніж стебла, зменшення частки їх у загальному виході сіна за рахунок механічних втрат у процесі його заготівлі призводить до зниження вмісту багатьох поживних речовин.

Листя люцерни має значно цінніший склад порівняно зі стеблами. У ньому міститься близько 80% протеїну й каротину, а також 70% основних мінеральних елементів, а кормова цінність його протягом вегетації змінюється мало, тоді як стебла швидко грубшають, особливо в нижній частині. До того ж, стебло в люцерни покрите товстим восковим шаром, що затримує сушіння, яке можна прискорити шляхом розплющування його, але це збільшує небезпеку вимивання поживних речовин у дощову погоду.

Листя у покосах люцерни сохне набагато швидше, ніж стебла, різниця у кількості води досягає 10–15%. Так, якщо маса люцерни має вологість 29%, то стебла — 36, а листя — лише 17%.За подовження строків збирання сіна втрати сягають 50% .

Особливо великі втрати листкової маси у несприятливу погоду, вони можуть досягати 27%.

Доведено, що листя люцерни втрачає свою еластичність і стає крихким уже за вологості рослин 50%, тому технологія сінозаготівлі передбачає ворушіння й згрібання пров’яленої маси у валки за вологості трави, що вища від зазначеної.

Якщо ж ворушать, згрібають і складають у копиці майже сухе сіно, то кількість листя, що обсипалося, може досягти 50% і більше від загальної маси, а втрати кормових одиниць і перетравного протеїну за гарної погоди, відповідно, 26–40 і 23%, а за дощової — 60 і 55%.

Значно зростають ці втрати за умов високої врожайності люцерни, коли скошувана зелена маса лягає у покоси щільним шаром, товщина якого може досягати 20 см. Через це навіть у суху та жарку погоду активно висихає лише верхній шар, під яким через відсутність аерації навіть на другу-третю добу в щільно укладеному покосі залишається абсолютно свіжа, інколи пожовкла маса.

І в нас, і за кордоном для прискорення сушіння люцерни застосовують такі технологічні операції, як плющення стебел, ворушіння маси, обертання валків тощо. При цьому віддають перевагу виготовленню пресованого сіна (в тюках або рулонах), завдяки чому механічні втрати за рахунок виключення таких операцій, як згрібання, стягування, складання в копиці, що призводить до обламування листя, зменшуються у 2–2,5 раза.

Виходячи з наведеного та з метою вивчення інтенсивності вологовіддачі, поживності та використання тваринами поживних речовин люцернового сіна, заготовленого з використанням різних технологічних прийомів, у дослідних господарствах Інституту кормів УААН та Вінницької обласної сільськогосподарської дослідної станції було проведено два польових технологічних досліди на чистих посівах люцерни синьої сорту Вінничанка за різних погодних умов.

У дослідах було виділено чотири ділянки поля відповідно до визначених варіантів: 1 (контроль) — маса висушувалася без будь-якої обробки валка; 2 — ворушіння валка проводили один раз на добу, о 10-й годині; 3 — ворушіння валка проводили двічі на добу, о 10-й та 17-й годині.

По досягненні масою вологості 50–60% операцію ворушіння змінювали на обертання валка, а за 20–22% її — пресували в прямокутні тюки щільністю 130–140 кг/м3 прес-підбирачем ПС-1,6 з навантаженням їх у полі.

Для ворушіння зеленої маси та обробітку валків у процесі сушіння люцерни на сіно використовували багатоцільову кормозбиральну машину БКМ-Ф2 з еластичними робочими органами.

Слід зазначити, що заготівлю сіна в обох дослідах проводили за ідентичною технологією, але за різних погодних умов. Так, у першому досліді під час заготівлі сіна кількість опадів становила 25–50 мм (норма — 22–29 мм), відносна вологість повітря — 74–82%. Грунт був насичений вологою, що певною мірою гальмувало процес випаровування води зі скошеної маси з огляду на її гігроскопічність. Температура повітря коливалася в межах 14–29°С.

Другий дослід було проведено за сухої й жаркої погоди. Середньодобова температура повітря коливалася в межах 27–34°С, а відносна вологість повітря становила 49–56%.

Скошували люцерну в обох дослідах косаркою Є-302 у валок без плющення.

Вихідна маса люцерни у першому досліді характеризувалася середньою врожайністю 544 ц/га, у другому — 327 ц/га (другий укіс).

Втрати сухої речовини в результаті оббивання вегетативних частин рослин обчислювали на основі визначення облистяності їх до і після виконання операції, а також частки сухої речовини оббитих частин, які залишалися у траві після її обробки.

Сумарні втрати сухої речовини встановлювали за масою погонного метра валка до пров’ялювання (з визначенням вологості) і за вмістом сухої речовини перед підбиранням готового сіна.

Результати проведених досліджень свідчать, що розмір втрат сухої речовини сіна за одноразової обробки валка за несприятливої погоди зменшується, порівняно з контролем, на 4,5%, а за дворазового — на 1,7%, тоді як за сухої погоди, — відповідно, на 2,6 та 1,3%. Значну частину цих втрат становлять механічні, які зростають, порівняно з контрольним варіантом, за дворазової обробки валка за несприятливої погоди на 1,5%, а за сухої — на 0,9%, а, порівняно з витратами сухої речовини за одноразової обробки валка, — відповідно, на 2,4 та 1,5%.

Більшу частину цих втрат становлять механічні, що зростають за дворазової обробки валка, порівняно з контролем, на 0,9–1,5%, а, порівняно з одноразовою обробкою, — відповідно, на 1,5–2,4%. Механічні втрати відбуваються в результаті оббивання листя в процесі обробки валків. Про це свідчить зменшення облистяності сіна за дворазової обробки валка, порівняно з контролем, на 0,9–1,6, а, порівняно з одноразовою, — на 1,7–3,1%.

Різна кратність обробки валка істотно позначилася на тривалості висушування, проте в основному це залежало від погодних умов. Так, у першому досліді, коли повітря і грунт були насичені вологою, висушування трави тривало на 25 годин більше, ніж у другому. Характерно, що за цих умов одноразова обробка валка сприяла скороченню часу сушіння на 32 години, дворазова — тільки на 11, тоді як за сухої погоди висушування трави в обох варіантах скорочувалося на 24 години. Це пояснюється тим, що за додаткового зволожування маси (знизу — грунтовою вологою, а зверху — росою), дворазова обробка валків не дає бажаного результату, оскільки в процесі цієї обробки трава збивається, через що погіршується рівномірність її розподілу за довжиною та шириною валка.

Наведену технологію заготівлі люцернового сіна впроваджено в низці господарств Вінницької області. [17]

На підставі проведеного мною аналізу мною була запропонована технологія яка наведена в таблиці 4.1

Основним критерієм енергетичного аналізу є коефіцієнт енергетичної ефективності (Ке), який розраховують як відношення енергії що міститься в урожаї (Еу) до енергії (непоновлюваної), витраченого на його виробництво (Енп). Технологію вважаємо енергозберігаючою, якщо:

де - енергоємність урожаю МДж/га; [13]

ек – 21,83 МДж/кг – енергоємність 1кг сухої речовини люцерни на сіно;

U-3000 кг/га - урожай люцерни;

КСР – 0,25 - середній вміст сухої речовини

Витрата не поновлюваної енергії при виробництві культури з розрахунку на 1га:

Енп= Еп+ Еее+ Ен+ Емд+ Еод+ Епц+ Евод+ Епл+ Емех

де Еп - витрата енергії на паливо;

ВП=115 кг/га – витрата палива;

еП=42,7 МДж/кг – енергетичний еквівалент дизельного палива.

Еее – витрати на електроенергію, Еее=0;

Ен – витрата енергії на насіння,

Енн∙ен=20∙20,2= 404 МДж/кг

Нн – 20 кг/га – норма висіву люцерни.

ен - 20,2 МДж/кг – енергетичний еквівалент насіння люцерни.

Емд - витрата енергії на мінеральні добрива,

Емд= Нмд∙емд=100∙13,6=1360 МДж/кг

Нмд=100 кг/га – норма внесення мінерального добрива (кальцієва селітра).

емд=13,6 МДж/га – енергетичний еквівалент кальцієвої селітри.

Еод – витрата енергії на органічні добрива, Еод=0 МДж/га.

Епц – витрата енергії на пестецеди, Епц=0 МДж/га

Евод – витрата енергії на воду, Евод=0МДж/га

Епл – витрата енергії на людей,

Еплпр∙епр

Зпр=10,2 люд∙год/га – затрати праці,

епр=60,8 МДж/люд∙год – енергетичний еквівалент.

Епл=60,8∙10,2=620,16 МДж/га

Емех – витрата енергії на використання техніки розраховується в залежності від продуктивності МТА,

Етр – енергоємність трактора:

Етр-МТЗ-80 = 76,8 МДж/год,

Етр-Т-150К = 183,1 МДж/год,

Етр-ЮМЗ-6Л = 76,5 МДж/год.

Езч – енергоємність зчіпки:

Езч СГ-21=6,4 МДж/год

Есгм – енергоємність сільськогосподарських машин:

ЕБД-10 =296 МДж/год,

ЕМВУ-0,5= 144,1 МДж/год,

ЕПЛН-5-35 = 28,8 МДж/год,

ЕБЗСС-1= 3,6 МДж/год,

ЕЄвропак= 66,4 МДж/год,

ЕСЗУ-3,6 = 158,4 МДж/год,

ЕКРН-2,1М = 22,2 МДж/год,

ЕВР-7,4 =4,4 МДж/год,

ЕГРП-3,6 = 35,4 МДж/год,

ЕПРП-1,6 = 134,3 МДж/год. [12]

n – кількість машин в агрегаті,

W2 – годинна продуктивність МТА (з технологічної карти).

Витрата енергії на проведення сільськогосподарської операції:

Так як для деяких операцій продуктивність дана в тоннах і витрата матеріалу т/га то

Нга – норма витрати матеріалу в тоннах на 1гектар

ЕУЗСА-40 = 66,4 МДж/год,

ЕПЭ-0,8Б = 60,0 МДж/год,

Е2ПТС-4=75,3 МДж/год,

ЕПФ-0,5 = 3,3 МДж/год,

ЕГАЗ-53Б = 53,6 МДж/год. [12]

Витрати не поновлюваної енергії будуть становити:

ЕНП = 4910,5 + 404 + 1360 + 620,16 + (67,78 + 35,6 + 192,6 + 25,73 +67,4 + 106,9 + 50,25 + +10,2 +32,5 + 351,8 + 12 + 4,5 + 152,2 + 59,85) = 8147,42 МДж/кг

Тоді коефіцієнт енергетичної ефективності буде дорівнювати:

Так як Ке≥2 то дана технологія вважається енергозберігаючою.

Важливим показником сільськогосподарського виробництва є коефіцієнт екологічної ефективності:

де П=167364 МДж/га – екологічний поріг.

Так як коефіцієнт Ке.е.=20,54≥5 то дану технологію можна вважати екологічнобезпечною і можна її рекомендувати для впровадження в виробництво в СТОВ «Глуховецьке» Козятинського району Вінницької області. Але для більш детального дослідження необхідно досліди ще хоча б одну технологію. Данна технологія наведена в таблиці 4.2.

Таблиця 4.2 Енергетична оцінка технології вирощування люцерни на сіно, урожайність 23,5 ц/га

Види робіт

Якісні та об’ємні показники

Склад агрегату

Витрати на 1 га

Енергоємність, МДж

Трактори, автомобілі, комбайни

Сільгоспмашини

Виробіток за 1 год

Палива кг, електроенергії, кВт/год

Праці люд/год

Тракторів, автомобілів

Сільгоспмашин

Палива, електроенергії

Праці, люд/год

Разом

1

2

3

4

5

6

7

8

9

10

12

13

Лущення стерні

Т-150К

ЛДГ-15

4,8 га

5,4 кг

0,2

26,67

95,13

230,58

0,252

352,632

Оранка

Т-74

ПЛН-4-35+2БЗСС-1,0

0,8 га

15,8 кг

1,250

163,75

45

674,66

1,575

884,985

Снігозатримання

-

-

-

-

-

2,91

-

-

-

2,881

2,881

Раннє весняне боронування в два сліди

Т-74

СГ-21+21БЗСС-1,0

12 га

1,8 кг

0,167

21,877

31,22

76,86

0,21

130,176

Передпосівна культивація з боронуванням

Т-74

СП-11+2КПС-4+8бЗСС-1,0

5 га

2,3 кг

0,200

26,2

41,6

98,21

0,252

166,262

Навантажування насіння в завантажувач сівалок

Ел. двигун

ЗПС-100

7,5 т

0,03 кВт

0,03

-

0,792

0,108

0,027

0,927

Перевезення насіння, мінеральних добрив та завантажування сівалок

ГАЗ-53А

УЗСА-40

3 т

0,7 кг

0,037

3,395

6,57

30,8

0,047

40,812

Сівба трав з внесенням мінеральних добрив

ДТ-75

СП-11+СЗУ-3,6 (3)

3,2 га 4 люд

4,2 кг

0,313

37,873

144,6

179,34

1,238

4464,85

Коткування посівів

ДТ-75

СП-11+ЗККШ-6(2)

6 га

2,1 кг

0,17

20,57

57,8

89,67

0,214

168,254

Скошування сіна

ЮМЗ-6Л

КПРН-3

1,9

3,8

0,519

26,47

103,8

200,64

0,65

331,56

Згрібання сіна у валки

Т-25

ГВЦ-3

1,8

1,5

0,5

20,24

17,98

79,20

0,69

118,11

Ворушіння сіна у валках

Т-25

ГВК-6

3,6

1,2

0,28

10,36

9,16

63,36

0,35

83,23

Згрібання сіна

Т-25

ГВЦ-3

1,8

1,5

0,5

20,24

17,98

79,20

0,69

118,11

Транспортування сіна до місця скиртування

МТЗ-80

2ПТС-4

4,6 Т

4,14

0,59

29,5

18,88

176,77

0,743

225,901

Скиртування сіна

МТЗ-80

ПФ-0,5

3лллюд, 4 т

4,75

2,036

101,8

12,21

202,82

2,077

318,918

Всього

7407.6

Основним критерієм енергетичного аналізу є коефіцієнт енергетичної ефективності (Ке), який розраховують як відношення енергії що міститься в урожаї (Еу) до енергії (непоновлюваної), витраченого на його виробництво (Енп). Технологію вважаємо енергозберігаючою, якщо:

де - енергоємність урожаю МДж/га;

ек – 21.83 МДж/кг – енергоємність 1кг сухої речовини люцерни па ссіно;

U- 2350кг/га - урожай люцерни;

КСР – 0.25 - середній вміст сухої речовини

Тоді коефіцієнт енергетичної ефективності

Визначаємо коефіцієнт енергетичної ефективності

де П=167364 МДж/га – екологічний поріг.

Так як Ке і Ке в другій технології менше за 2 то данну технологію можна вважати не енергозберігаючою і рекомендувати господарству впроваджувати першу енергозберігаючу технологію даже не зважаючи на те що коефіцієнт екологічної ефективності в другій технології більший.

4.2 Розрахунок рекомендованих енергозберігаючих технологій заготівлі і зберігання силосу

Кукурудза – одна із найбільш цінних за кормовими і урожайними властивостями сільськогосподарських культур, займає провідну позицію у світовому виробництві зерна. За своїм біологічним потенціалом, рівнем продуктивності і якісними показниками продукції вона переважає інші зернові культури, добре реагує на оптимізацію умов життєдіяльності рослин, які створюються шляхом застосування науково обґрунтованих сівозмін, обробітку ґрунту, добрив, агротехнічних і хімічних засобів захисту урожаю від бур’янів, хвороб і шкідників

Разом з тим технологія вирощування кукурудзи є енерго- і трудомісткою, виробничі витрати в зональному розрізі можуть сягати 1,5-2,5 тис. грн./га залежно від технологічних схем. Їх зменшення в перспективі пов’язано із застосуванням зональних енергозбережних і ресурсоощадних технологій, які базуються на новітніх досягненнях науки і техніки, застосуванні науково-обґрунтованих і економічно-доцільних систем сівозмін, способів обробітку ґрунту, доз добрив.

На даний час кукурудза на силос вирощується не ефективно не тільки в даному господарстві ай в цілому по Україні. Ідея використання вузьких рядків існувала вже давно. Однак тільки досліди останніх років показали доцільність використання цього методу на практиці. Вузькорядне висівання кукурудзи на силос є відносно легкий для застосування на практиці. Рівномірне розподілення рослин сприяє кращому засвоєнню води, що позначається на збільшенні врожаїв. Потрібні компоненти для переобладнання посівної техніки, як і культиватори зі змінною шириною рядків, нині можна придбати у багатьох виробників. А збільшений урожай кукурудзи на силос компенсує витрати на придбання техніки.

Для вирощування кукурудзи на зерно оптимально придатні міжряддя в 50 см. Про це свідчать численні досліди, що проводилися з 1984 року в Північній Америці. Було встановлено переваги такого вирощування порівняно з міжряддями в 38 см. Оскільки у разі останнього змикання рядків настає значно раніше, обмежується можливість проведення культивації та обприскування. Фермери знайшли вихід — обробляти посіви гербіцидом слід до змикання рядків та застосовувати вузькорядні культиватори. Для обробки такого поля потрібно застосовувати вузькі шини, та й обладнання для обробки такого посіву створює більший тиск на ґрунт унаслідок більшої маси.

На відміну від звичайного рядкового висіву, у разі звужених рядочків відстань між рослинами майже однакова. Поле, засіяне таким чином, здається ніби вкритим правильними трикутниками, що прилягають один до одного. У вершинах таких трикутників перебувають рослини.

Усього за два дослідних роки німецькими дослідниками було проведено п'ять тестів на порівняння вузькорядного висіву зі звичайним. Результати показали більший вміст сухої речовини в качанах із полів, де застосовувати вузькорядне висівання, оскільки саме воно дає перевагу під час розвитку культури: темп фотосинтезу під час вегетації був вищим, і сонячна енергія використовувалась ефективніше. Лише одне це привело до більш раннього дозрівання качанів. Крім того, було встановлено, що качани водночас були на 8% важчі, ніж за звичайного варіанта. Вища концентрація білка також була відмічена саме на вузькорядних посівах.

Досліди, проведені різними організаціями останніми роками, показують переваги вузькорядного висіву кукурудзи на силос порівняно зі звичайним. Рівномірне розподілення рослин на полі дає багато переваг. По-перше, раніше настає змикання рядків, що приводить до сильнішого пригнічення бур'янів. Таким чином, використання гербіцидів зменшується на 25%. Вузькорядний висів також сприяє зменшенню ерозії ґрунтів. Волога випаровується набагато менше, ніж у разі звичайного посіву. Рослини мають ліпші умови розвитку, адже меншою є конкуренція за світло, воду та поживні речовини. Як наслідок, збільшується темп фотосинтезу, а разом з цим збільшується вихід зеленої маси.

Для того, щоб засіяти кукурудзу на зелену масу вузькорядним способом, техніка потребує переобладнання. Висівання можна проводити сівалками типу Optima Accord, на якій можна розмістити десять висівних агрегатів на 3-метровій рамі. Для того, щоб можна було разом з серійним переміщенням трансмісії реалізувати більші відстані між рослинами в рядку, потрібно розмістити спеціальні висівні диски з вісьмома отворами замість одинадцяти. Якщо утвориться кут між отворами в 45°, треба в кожний другий висівний диск вмонтувати байонет, зміщений на 22,5°. Таким чином утворюється зміщення у схемі висіву.

Більшість дослідників указує на те, що ефективність у разі вузькорядного висіву залежить від сонячної інсоляції. Що більше годин денного світла під час вегетаційного періоду, то більше сонця отримають рослини. Ось чому технологію вузькорядного висівання доцільніше застосовувати у центральних і південних регіонах України. Де і знаходиться СТОВ «Глуховецьке».

Перехід на вужчі міжряддя потребує вкладення деяких коштів. Ключове значення має переобладнання техніки, яка є в наявності в господарстві, або вибір нової. Це найбільші вкладення на шляху до вузькорядного висіву, і до цього треба підійти серйозно.

Розміри господарства. Зміна методів вирощування потребує значних фінансових витрат, і на малому полі ці зусилля можуть себе не виправдати. Продуктивність у разі переходу до вузькорядного способу висівання буде відчутною, якщо кукурудзу в господарстві вирощують на великій площі. Найбільше зростання прибутку таке висівання дає на площі від 300 га.

Проаналізувавши наведену вище інформацію я пропоную впроваджувати вузькорядний спосіб посіву кукурудзи , адже це і піддержує наведене нище енергетичне порівняння двох технологій. [18]

Таблиця 4.3 Технології вирощування кукурудзи на силос при вузькорядному посіві. урожайність 434 ц/га.

Види робіт

Якісні та обємні показники

Склад агрегату

Витрати на 1 га

Енергоємність, МДж

Трактори,автомобілі, комбайни

С-г машини

Виробіток за 1 год

Палива кг, електроенергії, кВт

Праці люд/год

Тракторів, автомобілів

Сільськогоспмашини

Палива, Електроенергії

Добрив,пестицидів

Праці, люд/год

Разом

1

2

3

4

5

6

7

8

9

10

11

12

13

Лущіння стерні у двох напрямків

6-8 см

Т-150К

ЛДГ-15

9,5

5,40

0,211

26,737

63,411

269,779

0,265

360,191

Змішування і навантаження

0,95

МТЗ-80

СЗУ-20

9,3

3,05

0,103

7,876

22,869

152,472

0,222

183,439

Внесення з доставкою 5 км.

0,95

Т-150К

РУМ-8

5,0

7,95

0,200

25,4

47,0

397,064

0,252

469,716

Навантаження з кагатів

72

Т-74

ПБ-35

28,6

25,20

2,517

329,035

154,07

1258,967

3,172

1745,244

Внесення з доставкою 5 км

72

Т-150К

ПРТ-10

0,86

34,32

1,163

147,674

269,767

1714,593

1,465

2133,5

Витрачено добрив, кг

Органічних

72000

302 40,0

30240,0

Азотних

120

104 16,0

104 16,0

Фосфорних

80

1008,0

1008,0

Калійних

90

747,0

747,0

Оранка зябу плугом з передплужниками

25-27 см

Т-74

ПЛН-4-35+ 2БЗСС-1,0

0,8

15,8

1,250

163,375

41,000

789,352

1,575

995,302

Лущіння стерні у двох напрямках

6-8 см

Т-150К

ЛДГ-15

9,5

5,4

0,211

26,737

63,411

269,779

0,265

360,191

Внесення боронування у два сліди

Т-74

СГ-21+ 21БЗСС-1,0

12,0

1,8

0,1667

21,783

36,600

89,926

0,210

148,520

Вимірювання поверхні ґрунту

Т-74

7-ШБ-2,5

8,1

1,1

0,123

16,136

9,506

54,955

0,156

80,752

Транспортування води до 5 км

0,3

ЮМЗ-6Л

РЖТ-4

5,0

0,5

0,06

4.590

4.740

24,980

0,076

34,385

Транспортування гербіциду

0,007

Т-16М

0,9

0,1

0,008

0,303

4,996

0,010

5,308

Приготування робочої рідини

0,307

ЮМЗ-6Л

АПР “Темп”

5,7

0,6

0,054

4,0120

2.558

29,975

0,165

36,819

Внесення

0,307

ЮМЗ-6Л

ПОУ

2,4

1,75

0,417

31,875

61.500

87,428

0,525

181,328

Внесення в грунт

10-12 см

Т-150К

БДТ-7

4,3

4,40

0,233

29,535

65.116

219,820

0,293

314,764

Витрати ерадикану, кг

5,6

2352,0

2352,0

Передпосівна культивація з боронуванням

5-7 см

Т-74

СП-11+2КПС-4+8БЗСС-1,0

5,0

2,30

0,2

26,140

40.160

114,906

0,252

181,458

Навантаження

0,05

Ручне

0,7

0,073

0,136

0,136

Транспортування

0,05

Т-16М

0,9

0,21

0,057

2,217

10,248

0,072

12,536

Навантаження

0,025

Ручне

0,7

0,036

0,066

0,066

Транспортування

0,025

Т-16М

0,9

0,10

0,028

1,081

4,996

0,035

6,111

Сівба із внесенням мінеральних добрив

Т-70М

John Deere MaxEmerge

1,9

3,0

0,526

56,263

63,421

149,877

1,137

270,698

Витрати насіння кукурудзи, кг

25

478,75

478,75

Витрати мін. добрив, кг

10

126,0

126,0

Прикочування посівів

Т-70С

3КВГ-1,4

7,2

1,6

0,139

14,847

12,472

79,934

0,175

107,4229

Збирання кукурудзи на силос

1 га

КСК-100

2,5

17,50

0,4

596,0

874,283

0,864

1471,147

Транспортування силосу, т

33,4

ГАЗ-53А

3,5

35,68

9,543

443,743

1836,9087

12,024

2292,676

Розвантаження та ущільнення, т

33,4

Т-150К

42

13,28

0,795

317,3

663,307

1,002

981,609

Додаткове ущільнення

Т-150К

42

1,40

0,024

8,286

69,943

0,03

78,258

Укриття силосної маси

ЮМЗ-6Л

БН-100А

50

1,80

0,02

1,020

6,106

89,926

0,025

97,077

Разом

178,83

18,345

1679,335

1496,3

8988,634

4536 7,750

24,203

57556.22

Основним критерієм енергетичного аналізу є коефіцієнт енергетичної ефективності (Ке), який розраховують як відношення енергії що міститься в урожаї (Еу) до енергії (непоновлюваної), витраченого на його виробництво (Енп). Технологію вважаємо енергозберігаючою, якщо:

де - енергоємність урожаю МДж/га;

ек – 16.80 МДж/кг – енергоємність 1кг сухої речовини кукурудзи;

U-43400 кг/га - урожай люцерни;

КСР – 0,25 - середній вміст сухої речовини

Тоді коефіцієнт енергетичної ефективності буде дорівнювати:

Так як Ке≥2 то дана технологія вважається енергозберігаючою.

Важливим показником сільськогосподарського виробництва є коефіцієнт екологічної ефективності:

де П=167364 МДж/га – екологічний поріг.

Дана технологія є енергозберігаючо але технологія є екологічнонебезпечна.

Таблиця 4.4 Енергозберігаюча технологія вирощування кукурудзи на силос урожайність 322 ц/га

Види робіт

Склад агрегату

Витрати на 1 га

Енергоємність, МДж

Трактори, автомобілі, комбайни

Сільгоспмашини

Виробіток за 1 год

Палива кг, електроенергії, кВт/год

Праці люд/год

Тракторів, автомобілів

Сільгоспмашин

Палива, електроенергії

Добрив, пестицидів

Праці, люд/год

Раззом

1

3

4

5

6

7

8

9

10

11

12

13

Обробіток ґрунту в 2 сліди після збирання кукурудзи

Т-150К

ЛГД-15

4,1 га

3,0

0,244

30,988

110,532

213,5

-

0,307

355,3

Рихлення грунту

Т-150К

ППЛ-10-25+БЗСС-1,0(3)

2,5га

7,3кг

0,40

50,8

17,6

311,71

-

0,504

380,6

Завантаження мінеральних добрив в подрібнювач

ЮМЗ-6Л

ПЭ-0,8Б

60 т

0,04 кг

0,005

0,255

0,21

1,708

-

0,006

2,179

Подрібнення мінеральних добрив

МТЗ-80

АИР-2,0+ ПЭ-0,8Б

14,3 т 3 люд.

0,96

0,06

3

15,72

40,99

-

0,061

59,77

Приготування суміші добрив і завантаження в транспортні засоби

МТЗ-80

СЗУ-20

9,3 т 2 люд.

0,96

0,06

3

13,38

40,99

-

0,065

57,43

Транспортування і внесення мінеральних добрив

Т-150К

РУМ-8

5 га

2,5 кг

0,2

25,4

18,8

106,7

1017

0,252

1168,

Оранка

Т-150К

ПЛП-6-35

1,1 га 16 кг

16 кг

0,91

115,5

40,95

683,2

-

1,147

840,8

Вирівнювання поверхні ґрунту після оранки

ДТ-75

ВПН-5,6

2,8 га

2,2 кг

0,36

43,56

79,92

93,94

-

0,454

217,8

Ранньовесняне боронування в 2 сліди

Т-150К

СГ-21+БЗТС-1,0(21)

83 га

3,8 кг

0,12

15,24

24,96

162,2

-

0,151

202,6

Перша культивація зябу з боронування

Т-150К

СП-16+КПС-4(2)+БЗСС-1,0(8)

4,8 га

3,8 кг

0,20

25,4

49,2

162,2

-

0,252

237,1

Передпосівна культивація з боронування

Т-150К

СП-16+КПС-4(3)+БЗСС-1,0(12)

8,7 га

2,6 кг

0,10

12,7

32,9

111,0

-

0,126

156,7

Навантаження і розвантаження

-

вручну

1,1 т 2 люд.

-

0,05

-

-

-

-

0,09

0,09

Навантаження і розвантаження ядохімікатів в тарі

-

вручну

1,1 т 2 люд.

-

0,15

-

-

-

-

0,27

0,27

Транспортування насіння, ядохімікатів

ГАЗ-53А

-

23т/км 2год

0,84 кг

0,08

3,76

-

36,96

-

0,086

40,80

Сівба

ДТ-75

John Deere MaxEmerge

4,1 га

1,4 кг

0,31

37,51

99,82

59,78

2830

0,391

3027,5

Коткування посівів

ДТ-75

СГ-21-ЗККШ-б(З)

84 га

2,4кг

0,12

14,52

63,48

102,4

-

0,151

180,6

До сходове боронування (два)

Т-150К

СГ-21+БЗСС-1,0(21)

12,6 га

2,8 кг

0,16

20,32

30,72

119,5

-

0,202

170,8

Перше після сходове боронування

ДТ-75

СП-16+БЗСС-1,0(18)

5,6 га

3,6 кг

0,18

21,78

30,6

153,7

-

0,227

205,9

Навантаження, транспортування і розвантаження гербіцидів

Т-16

Навантаж. і розвантаж., вручну

0,9 т 2 люд,

0,94 кг

0,39

15,21

-

40,13

-

0,421

55,79

Транспортування води і заправка ВР-3М

ГАЗ-53А

АЦ-4,2-53А

25 т/км

0,96 кг

0,09

4,23

3,807

42,24

-

0,113

50,39

Приготування робочої рідини і заправка обприскувача

ЮМЗ-6АЛ

ВР-ЗМ

7 т

0,18 кг

0,05

-

3

7,686

-

0,063

13,299

Обприскування посівів гербіцидами

ЮМЗ-6АЛ

ПОУ

4 га

3,00 кг

0,25

12,75

11

128,1

264

0,315

416,1

Друге після сходове боронування

ДТ-75

СП-16+БЗСС-1,0(18)

5,6 га

3,6 кг

0,18

21,78

30,6

153,7

-

0,227

206,3

Навантаження мінеральних добрив

ЮМЗ-6АЛ

ПЗ-0,8Б

60 т

0,01кг

0,001

0,051

0,042

0,427

-

0,001

0,521

Транспортування мінеральних добрив на відстань 5 км

ГАЗ-53А

-

15 т

0,7 кг

0,07

3,29

-

30,8

-

0,088

34,178

Завантаження мінеральних добрив в КРН-5,6

вручну

2,2т 2 люд

-

0,16

-

-

-

-

0,288

0,288

Перший міжрядний обробіток з внесенням мінеральних добрив

ЮМЗ-6АЛ

КРН-5,6

2,2 га

1,75 кг

0,45

22,95

20,25

74,72

4800

0,567

4918,492

Другий міжрядний обробіток

ЮМЗ-6АЛ

КРН-5,6+КЛТ-38

2,9 га

1,6 кг

0,35

17,85

15,75

68,32

-

0,441

102,3

Третій міжрядний обробіток з підгортанням

ЮМЗ-6АЛ

КРН-5,6+КРН-53А

2,6 га

1,75 кг

0,33

16,83

14,85

74,72

-

0,416

106,8

Усього

2,781

174,1

224,0

996,6

5064

3,52

6461

Збирання кукурудзи на силос

КСК-100

2,5 га 2год

17,5 кг

0,82

-

1221,

747,2

-

0,886

19699

Транспортування силосної маси на відстань 5 км

ГАЗ-53А

-

3,5 га

68,8 кг

9,2

432,4

-

3027

-

11,59

3471

Розвантаження і ущільнення силосної маси

ЮМЗ-6АЛ,Т-130

-

2,8 га 3 люд

25,6 кг

1,07

426,9

-

1093

-

1,220

1521

Додаткове ущільнення силосної маси

Т-130

-

17 га

1,4 кг

0,06

20,88

-

59,78

-

0,076

80,736

Укриття силосної маси

ЮМЗ-6АЛ

БН-10А

50 т

1,8 кг

0,60

30,6

183,2

25,62

-

0,756

240,176

Разом

17,78

1452

2133

7974

8911

22,2

20492

Тоді коефіцієнт енергетичної ефективності буде дорівнювати:

Так як Ке≥2 то дана технологія вважається енергозберігаючою.

Важливим показником сільськогосподарського виробництва є коефіцієнт екологічної ефективності:

де П=167364 МДж/га – екологічний поріг.

Порівнюючи ці дві технології можна зробити висновок що ці дві технології є енергозберігаючі . крім того друга технологія є екологічно безпечна а перша екологічно небезпечна. тому друга технологія є більш доцільна для впровадженя її в господарстві.

4.3 Розрахунок рекомендованих енергозберігаючих технологій заготівлі і зберігання комбікорму

Ярий ячмінь завжди стабілізує виробництво зерна в Україні в разі зниження врожаїв чи загибелі озимини.

У 2007 році на площі більше 200 тис. га ярий ячмінь дав врожай по 36,4 ц/га, в той час як озима пшениця - тільки по 32,3 ц/га.

Є всі підстави прогнозувати значне збільшення його посівних площ і за умов 2008 року.

Хоча ячмінь здатний давати рентабельні врожаї навіть без внесення добрив і по веснооранці, необхідно активно впроваджувати агротехнічні заходи по інтенсифікації системи його виробництва.

Фахівцями Селекційно-генетичного інституту створена низка сортів, які спроможні повно реалізувати умови різних за енергозберігаючих технологій. Так, до помірно посушливих умов адаптовані сорти Одеський 151. Дерибас, Адапт, Сталкер, Галатея, Галактик, Південний. Всі вони за екстремальних умов в елітгоспах Селекційно - генетичного інституту давали врожаї до 47-51 ц/га, тоді як кращі сорти пшениці тільки 35-37 ц/га.

У 2001 сприятливому для одержання високих врожаїв році дослідне господарство "Пам'ять чекіста", де були застосовані оптимальні технології вирощування, одержало середній врожай з насіннєвих посівів по 84 ц/га. Сорт Адапт з площі 70 га (Р-2, еліта) дав по 74 ц/га, а сорт Галатея з площі 8 га (Р-1)-89 ц/га.

Високоінтенсивні сорти (Едем, Зоряний, Гетьман, Оболонь) можна успішно вирощувати в Вінницькій області. До особливої групи сортів належить ярий шестирядний ячмінь Паллідум 107, який в сприятливих умовах є неперевершеним за врожаєм.

Насіння всіх сортів високої якості можна придбати в насіннєвих господарствах інституту. В господарстві ускладнилася підготовка ґрунту. І після попередників лишається багато післяжнивних залишків, їх та бур’яни треба обов'язково прибрати з полів, інакше якісної підготовки ґрунту отримати не можна.

Дрібні післяжнивні залишки необхідно якісно загорнути в ґрунт на достатню глибину.

Обробіток ґрунту під посів ярого ячменю (оранка на глибину 25 см) треба проводити з осені з обов'язковим внесенням повного мінерального добрива.

Орієнтовно, норма добрив має складати 45 - 60 кг/га діючої речовини NPK, але вона вимагає корегування в залежності від родючості ґрунтів конкретних полів.

Поряд з вирішенням технологічних питань, потрібно розширювати сортовий склад посівів. В кожному господарстві доцільно висівати 2-3 сорти. Це дасть змогу створити пластичну популяцію культури, яка спроможна, краще протидіяти негативним впливам умов вирощування. В цьому зв'язку необхідно слідкувати за появою нових сортів, знати їх та активно впроваджувати у виробництво. [17]

Основним критерієм енергетичного аналізу є коефіцієнт енергетичної ефективності (Ке), який розраховують як відношення енергії що міститься в урожаї (Еу) до енергії (непоновлюваної), витраченого на його виробництво (Енп). Технологію вважаємо енергозберігаючою, якщо:

де - енергоємність урожаю МДж/га;

ек – 19.13 МДж/кг – енергоємність 1кг сухої речовини ячменю;

U- 4430 кг/га - урожай ячменю;

КСР – 0.86 - середній вміст сухої речовини

Тоді коефіцієнт енергетичної ефективності буде дорівнювати:

Так як Ке≥2 то дана технологія вважається енергозберігаючою.

Важливим показником сільськогосподарського виробництва є коефіцієнт екологічної ефективності:

Таблиця 4.5 Енергетична оцінка технології вирощування фуражного ячменю, урожайність 44,3 ц/га.

Вид робіт

Якісні та об’ємні показники

Склад агрегату

Витрати на 1 га

Енергоємність, МДж

Трактори, автомобілі, комбайни

Сільськогосподарські машини

Виробіток за 1 год.

Палива кг, електроенергії, кВт

Праці люд/год

Тракторів, автомобілів

Сільгоспмашини

Палива,

Електроенергії

Добрив,

пестицидів

Праці,

люд/год

Разом

1

2

3

4

5

6

7

8

9

10

11

12

13

Лущення

стерні

6-8 см

Т-150К

ЛДГ-15

4,8 га

5,4 кг

0,2

26,67

95,13

230

-

0,252

352,632

Навантаження

мінеральних добрив

0,29 т

ЮМЗ-6АЛ

ПЗ-0,8

11 т 2люд

0,03 кг

0,053

2,703

2,226

1,2

-

0,057

6,267

Подрібнення добрив

0,29 т

ЮМЗ-6АЛ

ИСУ-4

4 т 2 люд

0,1 кг

0,145

7,395

5,51

4,27

-

0,157

17,332

Навантаження добрив у змішувач

0,29 т

ЮМЗ-6АЛ

ПЗ-0,8Б

11 т 2люд

0,03 кг

0,053

2,703

2,226

1,28

-

0,057

6,267

Змішування добрив

0,29 т

Ел.двиг.

СЗУ-20

16 т

0,54 кВт

0,018

-

4,014

1,944

-

0,016

5,974

Транспортування і внесення мінеральних добрив

0,29 т

Т-150К

РУМ-8

11 га

2,5 кг

0,2

25,4

18,8

106

3078

0,252

3229,202

Оранка на зяб

ДТ-75

ПНИ-35+БЗТС-1,0

1,3 га

10,8 кг

0,70

84,7

20,3

461

-

0,882

567,042

Протруювання насіння

0,2

Ел.прив.

ПС-10

10т 3 люд

0,2 кВт

0,06

-

1,98

0,72

170

0,162

173,362

Ранньовесняне боронування

ДТ-75

СП-16+БЗМСС-1,0(17)

8,4 га

1,8 кг

0,12

14,52

19,8

76,8

-

0,151

111,331

Передпосівна культивація

ДТ-75

СП-11+КПС-4(2)

5,3 га

2,3 кг

0,19

22,99

31,92

98,2

-

0,24

153,36

Навантаження насіння

0,22

Ел.двиг.

ЗПС-100

7,5 т

0,03 кВт

0,03

-

0,792

0,108

-

0,027

0,927

Транспортування ы заправка сівалок

0,22 т

ГАЗ-53А

УЗСА-40

0,7 кг

0,037

3,395

6,57

30,8

-

0,047

40,812

Сівба

ДТ-75

СП-11+СЗ-3,6(3)

3,2 га 4 люд.

4,2 кг

0,313

37,873

144,606

179,34

4101

1,238

4464,857

Прикочування посівів

ДТ-75

СП-11+ЗККШ-6(2)

6 га

2,1 кг

0,17

20,57

57,8

89,67

-

0,214

168,254

Транспортування води ядохімікатів

0,362 т

АЦА-3,85-53А

АЦ-4,2-53А

1,12 кг

0,117

6,318

-

49,28

-

0,147

55,745

Приготування робочої рідини і заправка агрегату

0,362 т

МТЗ-80

АПЖ-12

8т 2 люд

0,41 кг

0,09

4,5

6,3

17,507

-

0,097

28,404

Обробка посівів ядохімікатами

0,362

МТЗ-80

ОВТ-1Б

8 га

1,15 кг

0,125

6,25

25,25

5,338

718

0,158

754,996

Скошування у валки (50% площі)

0,5 га

ЮМЗ-6 АЛ

ЖРС-4,9

2,7 га

0,625 кг

0,19

9,435

48,1

26,688

-

0,239

84,462

Підбір та обмолот валків (50% площі)

0,5 га

СК-5

2-ПТС-4-887А

1,43 га 2 люд

3,12 кг

0,35 0,7

264,6

11,2

133,011

-

0,756

409,567

Пряме комбайнування (50% площі)

0,5 га

СК-5

2-ПТС-87 А

1,14 га 2 люд.

7,2 кг

0,88

665,28

28,16

307,44

-

0,95

1001,83

Транспортування зерна ( 5 км )

2,43 т

ГАЗ-53Б

-

15 т/км

1,7 кг

0,81

43,74

-

74,8

-

1,021

119,561

Транспортування соломи

2,9т

ЮМЗ-6АЛ

2-ПТС-4-887 А

4т/км

4,14 кг

1,09

55,59

34,88

176,778

-

1,373

267,621

Скиртування соломи

2,9 т

ЮМЗ-6АЛ

ПФ-0,5

4т 4 люд

4,75 кг

2,91

148,41

17,46

202,825

-

2,881

371,576

Первинна очистка зерна

2,43 т

Ел.двиг.

ЗАВ-20

20 т

4,73 кВт

0,20

-

1045

17,028

-

0,18

1062,208

Разом

10,357

1453,042

1628,024

2293,669

8068,3

11,554

13454,589

де П=167364 МДж/га – екологічний поріг.

Технологі є енергозберігаюча і екологічнобезпечною.

Основним критерієм енергетичного аналізу є коефіцієнт енергетичної ефективності (Ке), який розраховують як відношення енергії що міститься в урожаї (Еу) до енергії (непоновлюваної), витраченого на його виробництво (Енп). Технологію вважаємо енергозберігаючою, якщо:

де - енергоємність урожаю МДж/га;

ек – 19.13 МДж/кг – енергоємність 1кг сухої речовини ячменю;

U- 3470кг/га - урожай ячменю;

КСР – 0.86 - середній вміст сухої речовини

Тоді коефіцієнт енергетичної ефективності буде дорівнювати:

Так як Ке≥2 то дана технологія вважається енергозберігаючою.

Важливим показником сільськогосподарського виробництва є коефіцієнт екологічної ефективності:

де П=167364 МДж/га – екологічний поріг.

Проаналізувавши дані технології можна зробити висновки, що обидві технології є енергозберігаючими і екологічнобезпечними. Але першу енергозберігаючу технологію доцільніше впроваджувати в виробництво адже в неї більший коефіцієнт енергетичної ефективності.

Таблиця 4.6. Енергетична оцінка технології вирощування ячменю, урожайність 34.7 ц/га

Види робіт

Якісні та обємні показники

Склад агрегату

Витрати на 1 га

Енергоємність, МДж

Трактори, автомобілі, комбайни

Сільгоспмашини

Виробіток за 1 год

Палива кг, електроенергії, кВт/год

Праці люд/год

Тракторів, автомобілів

Сільгоспмашин

Палива, електроенергії

Добрив, пестицидів

Праці, люд/год

Раззом

1

2

3

4

5

6

7

8

9

10

11

12

13

Лущення стерні перше

6-8 см

Т-150

ЛДГ-15

10,7

5,4 кг

0,09

11,869

42,336

230,58

-

0,113

284,898

Лущення стерні друге

Т-150

ЛДГ-15

10,7

5,4 кг

0,09

11,869

42,336

230,58

-

0,113

284,898

Навантаження міндобрив

ЮМЗ-6Л

ПЭ-0,8Б

5,7

0,09

0,09

4,59

3,78

3,84

-

0,11

12,32

Перевезення та внесення міндобрив.

ЮМЗ-6Л

ІРМГ-4

4,7

2,50

0,23

11,73

17,94

106,75

2990,00

0,29

3126,71

Оранка

Т-74

ПЛН-4-35+2БЗСС-1,0

0,8 га

15,8 кг

1,250

163,75

45

674,66

-

1,575

884,985

Снігозатримання

-

-

-

-

-

2,91

-

-

-

-

2,881

2,881

Боронування зябу з шлейфуванням

ДТ-75

СП-16+БЗТС-1,0(17)

8,9 га

1,35 кг

0,11

13,31

20,02

57,645

-

0,139

91,114

Передпосівна культивація

Т-150К

СП-16+ЗКПС-4(2)

6 га

10,5 кг

0,17

21,59

35,02

448,35

-

0,2(4)

505,174

Навантаження міндобрив і насіння

Ел.прив.

ЗМ-30

8 т

0,03 кВт

0,08

-

3,2

0,108

-

0,072

3,38

Перевезення міндобрив і насіння

ГАЗ-53А

УЗСА-40

5,9 т

0,3 кг

0,01

1,845

2,7

13,2

-

0,038

17,783

Сівба з внесенням міндобрив

ДТ-75

СП-11+СЗ-3,6(3)

3,2 га 4 люд

4,2 кг

0,313

37,873

144,606

179,34

4101,8

1,238

4464,857

Транспортування води

АЦА-3,85-53А

АЦ-4,2-53А

3 т