Реферат : Радиоприёмные устройства (работа 3) 


Полнотекстовый поиск по базе:

Главная >> Реферат >> Радиоэлектроника


Радиоприёмные устройства (работа 3)




Исходные данные :

1. Диапазон волн - СВ : 525 - 1607 кГц

2. Чувствительность - В

3. Селективность по соседнему каналу - дБ, что составляет 39,811 раза

4. Селективность по зеркальному каналу - дБ , что составляет 63,096 раза

5. Полоса пропускания приёмника - Гц

6. Неравномерность ослабления в полосе

пропускания приёмника - дБ, что составляет 1,884 раза

7. Коэффициенты действия АРУ -  = 900 раз

-  = 2 раза

В

раза

раза

Гц

раза

раз

раза

Гц - нижняя частота диапазона

Гц - верхняя частота диапазона

Гц - промежуточная частота

Структурная схема приёмника ( общий вид ) :

Оглавление.

  1. Предварительный расчёт и составление структурной схемы

1.1.Определение необходимости использования УРЧ

1.2. Разработка избирательной структуры тракта усиления ПЧ

1.3.Предварительное распределение усиления по трактам ВЧ и ПЧ

  1. Электрический расчёт каскадов приёмника

    1. Входная цепь

    2. Усилитель радио частоты (УРЧ)

    3. Преобразователь частоты

    4. Усилители ПЧ

    5. Детектор сигнала

3. Литература

Задание:

I часть : Счётчик прямого счёта .

М = 13 ; триггеры типа JK.

Код двоичный, возрастающий;

Используются состояния : а0 , а1 … а12 .

II часть : Интерфейс ЗУ .

Lпзу = 11 KB ; Lозу = 4 KB .

III часть : Подпрограмма .

Сложить три положительных 10 – значных десятичных числа Х1, Х2, Х3 , представленные в коде BCD и хранящиеся в секторах ОЗУ с адресами младших байтов соот. 20016; 30016; 40016 .

Поместить полученную сумму (также в коде BCD) с учётом старшего (шестого) байта на случай переполнения в секторе ОЗУ на место Х2, т.е. по адресу 30016 .

Предполагается, что шестые байты в указанных секторах первоначально пусты.

Это – задача с двойным (вложенным) циклом.

Блок – схема алгоритма :

DE 20016

B 2

A (A)V(A)

HL 30016

C 6

A [(DE)]

A (A)+[(M)]+(Tc)

10 - КОРР

M (A)

C ( C ) -1

(Tz)=1

LOOP1

DE (DE) + 1

HL (HL) + 1

PC [ Addr ]

B (B) -1

(Tz)=1

LOOP2

DE 40016

PC [Addr]

NB

ДА

ДА

EN

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18


1. Предварительный расчёт и составление структурной схемы.

1.1. Определение необходимости использования УРЧ .

Так как у нас дБ , то примем = 3 дБ , что составляет 1,413 раза

раза, что составляет 36,766 дБ

раза

раза, что составляет 32.522 дБ

Так как у нас > , то нам не надо использовать УРЧ .

Тогда , примем :

раза, что составляет 32.522 дБ

Определим эквивалентные затухания контура :

При расчётах надо помнить , что существует предельно допусимые добротности , так называемые - конструктивные , выше которых нельзя сделать .

- конструктивная добротность для диапазона СВ


- конструктивное затухание

следовательно необходимо использовать УРЧ

Тогда получим :

раза, что составляет 16.506 дБ

Примем = = 6.688 раза

раза, что составляет 16.506 дБ

Проверим , какая получилась неравномерность в полосе пропускания приёмника :

раза, что составляет приблизительно 0 дБ


1.2. Разработка избирательной структуры тракта усиления ПЧ .

Так как нам необходимо исп - ть УРЧ , то примем : = = 5.5 дБ , что сост. 1,884 раза

раза

Как правило в качестве фильтрующих элементов используются двухконтурные фильтры , настроенные на частоту 465 кГц , но с различным фактором связи - 

Возьмём фактор связи  =

Тогда максимально допустимая добротность по полосе пропускания , допустимая для получения заданного , может быть расчитана по формуле :

где - число фильтров

Минимально допустимая добротность , необходимая для обеспечения заданной селективности по соседнему каналу , можно расчитать по формуле :

где = 10 кГц

Примем = 2 , тогда :

раза

раза

Т.е. получили > , тогда выберем как среднее ариф. между и


раза , что составляет 38.380 дБ

Таким образом , нам необходимо 2 фильтра для получения заданной селективности .

1.3. Предварительное распределение усиления по трактам .

Общий коэффициент усиления складывается из следующих величин :

где - коэффициент усиления входной цепи

- коэффициент усиления УРЧ

- коэффициент усиления преобразователя частоты

- коэффициент усиления УПЧ

Общий коэффициент усиления можно расчитать по формуле :

В - напряжение на детекторе сигнала

Предварительно примем :

Тогда :


Расчитаем число каскадов УПЧ :

где - коэффициент усиления одного каскада УПЧ

Примем

Если число контуров , то число фильтров с точки зрения усиления :

В итоге наших вычислений получили , что > . Примем = = 2 , но нам теперь необходимо добавить апериодический каскад , который только усиливает , с коэффициентом усиления = 5 .. 10 , и не влияет на селективность .

По полученым расчётным данным структурная схема приёмника выглядит следующим образом :

2. Электрический расчёт каскадов приёмника .

2.1 Входная цепь .

Определим тип переменного конденсатора .

Найдём коэффициент перекрытия по частоте :

С другой стороны, коэффициент перекрытия по ёмкости :

где Ф , а Ф , т.е.


Тогда коэффициент перекрытия по частоте , который даёт данный конденсатор равен :

Так как мы получили большую величину , чем нужно , то нам нужно укоротить :

Откуда , выражая , получаем :

Ф

В диапазоне СВ ёмкость состоит из - подстроечный конденсатор и - паразитный конденсатор ( = + ) .

Тогда

где Ф - ёмкость монтажа

Ф - входная ёмкость

Ф - ёмкость катушек

Ф

Теперь мы можем найти подстроечную ёмкость :

Ф

Таким образом , получили = 20,73 пФ

Определим индуктивность контура :

Гн

Таким образом , получили = 175,3 мкГн

Теперь найдём индуктивность связи .

Для этого сначала необходимо определить - максимальную резонансную частоту антенны :


где = 50 пФ - минимальная паразитная ёмкость антенны

= 10 мкГн - минимальная паразитная индуктивность антенны

Так как выражена через , то вычислим коэффициент удлиннения :

или после преобразования получим :

где - неравномерность коэффициента передачи ВЦ

Тогда искомая величина равна :

Гн

То есть получили = 2,658 мГн

Гц

Таким образом мы выбрали все параметры входной цепи :

Гн

Ф

Гн


Первые два варианта схем по разному влияют на . При перестройке от к при автотрансформаторной связи увеличивается затухание ( т.е. уменьшается ) и уменьшается m при увеличении частоты , а при внутриёмкостной связи уменьшается затухание ( увеличивается ) , причём довольно резко ( в 27 раз ) . Необходимо скомпенсировать рост добротности с одновременным уменьшение m , для этого будем использовать комбинированную связь . Будем поддерживать ) .

Рассчитаем оптимальный вид связи между антенной и ВЦ ( комбинированная связь )

Потребуем , чтобы коэффициент включения m менялся так , чтобы = . Это возможно только при комбинированной связи .

Определим затухание в контуре , которое необходимо на верхней частоте диапазона :


Определим коэффициент включения на верхней и нижней частоте :

где = 1 кОм - входное сопротивление транзистора УРЧ .

Используя полученные значения и , вычислим :

Теперь найдём

1.)

2,)

3,)

Ф

Гн

( Так как )

Таким образом , все параметры комбинированной связи мы нашли ( см.схему выше ) :

Гн

Гн

Ф

Гн

Ф

Расчитаем коэффициент передачи входной цепи .

где


Неравномерность коэффициента передачи ВЦ :

Проверим :

Неравномерность увеличилась , следовательно характеристика входной цепи ухудшилась .


2.2. Расчёт УРЧ

Элементы контура , , такие же как и во ВЦ . Здесь таже комбинированная связь , что и во ВЦ.

Найдём :

Гн

где = 13 пФ - суммарная паразитная ёмкость

Теперь расчитаем комбинированную связь контура с транзистором преобразователя :

По аналогии с расчётами выше имеет :


Гн

Расчитаем трансформаторную связь контура УРЧ с коллектором транзистора :

Оптимальное рассогласование

где = 35 кОм

Определим коэффициент связи между контуром и коллекторной цепью :

Теперь рассчитаем коэффициент усиления УРЧ на верхней и нижней частотах :

где  - характеристическое сопротивление контура

= 0,25 А/В - максимальная крутизна выходной ВАХ .

- входная проводимость

- выходная проводимость


Для УРЧ существует максимально допустимый коэффициент усиления с точки зрения устойчивости :

где - коэффициент устойчивости ,

= 1,8 пФ - паразитная ёмкость коллекторного перехода

следовательно нам необходимо уменьшать до тех пор , пока не будет равняться 0,6* , т.е. .

Таким образом примем , тогда :


2.3. Преобразователь частоты


Амплитуда крутизна первой гармоники при угле отсечки 90 градусов можно вычислить по формуле :

где = 0,25 - максимальная крутизна преобразующего элемента

= 0,04 - минимальная крутизна преобразующего элемента

Крутизна преобразования равна :

Расчитаем элементы контура фильтра , настроенного на частоту 465 кГц :

Примем :

Ф - чтобы не влияли различные паразитные ёмкости

Тогда :

Гн

Определим коэффициенты включения , необходимые для того , чтобы с учётом и была обеспечена заданная величина = 0.012

- конструктивная добротность ФПЧ

- конструктивное затузание ФПЧ

- характеристическое сопротивление контура


Определим коэффициент усиления преобразователя :

мА/В

МГц

пФ

Но существует максимально допустимый коэффициент усиления с точки зрения устойчивости :

Получили , что > , следовательно нам необходимо в равной степени уменьшать коэффициенты включения и , так чтобы коэффициент усиления преобразователя стал меньше , чем 0,6* , т.е. чтобы выполнялось неравенство .

Уменьшим коэффициенты включения и в 1,5 раза :

Тогда

2.4. Усилители промежуточной частоты

Число фильтров УПЧ равно :

следовательно у нас будет один контур УПЧ , и он будет нерегулируемый . Значит его рабочую точку необходимо установить в положение

Расчитаем эго параметры :


Где - входное сопротивление детектора сигнала , оно равно половине сопротивления нагрузки ( ) , а сопротивление нагрузки , в свою очередь равно 0,4 , а , следовательно получили , что

Ом

коэффициент усиления

каскада УПЧ

Но существует максимально допустимый коэффициент усиления с точки зрения устойчивости :

Получили , что > , следовательно нам необходимо в равной степени уменьшать коэффициенты включения и , так чтобы коэффициент усиления преобразователя стал меньше , чем 0,6* , т.е. чтобы выполнялось неравенство .

Уменьшим коэффициенты включения и в 2 раза :

Расчёт УПЧ делается по тойже методике , что и выше . Контур тотже самый , следовательно элементы такие же .

2.5. Детектор сигнала .

Используем последовательный амплитудный детектор на полупроводниковом диоде :


Обычно в качестве диода включают D9 , D18 , D20 . Выберем один из них , например D18 .

Его характеристики :

А/В - крутизна прямой ветви ВАХ

А/В - крутизна обратной ветви ВАХ

Ф - паразитная ёмкость

Входное сопротивление УНЧ выбирают в пределах 10 - 50 кОм ( обычно 20-30 кОм ) .

Примем :

Ом

Общую величину сопротивления нагрузки по постоянному току определяют из условия получения минимальных нелинейных искажений . Для этого сопротивление цепи по постоянному и переменному току должны быть примерно одинаковыми .

Допустим , что отклонение между ними составляет 20 % , т.е. .

Если считать , что =2,5 МОм >> , то

= { A } .

Для получения достаточного коэффициента передачи детектора обычно берут :

= 0,2 и = 0,8 { B } .

Совместное решение { A } и { B } дают результат : = 7500 Ом

= 2000 Ом

= 10000 Ом

Общую ёмкость нагрузки определяют из условия получения минимальных искажений вследствии избыточной постоянной времени цепи нагрузки :


где - верхняя частота модуляции = 3.8 кГц

Ёмкость нагрузки для улучшения фильтрации колебаний ПЧ обычно поровну делят м/у и , т.е. = = 0,5

Примем :

Ф , тогда :

Ф

Ф

Коэффициент передачи диодного детектора при линейно ломанной апроксимации ВАХ определяется углом отсечки  тока через диод ( ) :

радиан , что составляет

приблизительно 16 градусов

С учётов резистивного делителя в цепи нагрузки :

Для правильного подключения диода к последнему контуру УПЧ определим входное сопротивления диодного детектора . При последовательной схеме :

Ом


Похожие работы: