Реферат : Задачи по теории принятия решений 


Полнотекстовый поиск по базе:

Главная >> Реферат >> Экономико-математическое моделирование


Задачи по теории принятия решений




УНИВЕРСИТЕТ РОССИЙСКОЙ АКАДЕМИИ ОБРАЗОВАНИЯ

Факультет: Бизнес, Маркетинг, Коммерция

Дисциплина: Теория принятия решений

Тема контрольной работы: [Задачи по четвёртому варианту]

Ф.И.О. студента: Спрыжков Игорь Максимович

Курс: 4. Семестр: 7. Номер зачетной книжки: 1818.

Дата сдачи: _____________________

Ф.И.О. преподавателя: Асташкин С.В.

Оценка: _________________________ Подпись: _________________________

Дата проверки: __________________

Задача 1

Условие

Решить симплекс-методом задачу, предварительно приведя её к каноническому виду:

x1 – x2 – x3 + 7x4 → max

-x1 + 2x2 – x3 + x4 ≤ 2

2x1 + x2 + x3 – 2x4 ≤ 12

2x1 + 3x2 + 4x3 + 2x4 ≤ 6

xj ≥ 0, j = 1, 2, 3, 4

Решение

Общий вид задачи линейного программирования в канонической форме:

aij = bi, i = 1, 2, …, n

xj ≥ 0, j = 1, 2, …, n, n+1, n + m

pjxjmax

Экономико-математическая модель рассматриваемой задачи в канонической форме будет иметь вид:

-1x1 + 2x2 – 1x3 + 1x4 + 1x5 + 0x6 + 0x7 = 2

2x1 + 1x2 + 1x3 - 2x4 + 0x5 + 1x6 + 0x7 = 12

2x1 + 3x2 + 4x3 + 2x4 + 0x5 + 0x6 + 1x7 = 6

xj ≥ 0, j = 1, 2, …, 7

x1x2x3 + 7x4 + 0x5 + 0x6 + 0x7max

Т.е. в ней линейная форма максимизируется, все ограничения являются равенствами, все переменные удовлетворяют условию неотрицательности.

Система уравнений имеет предпочитаемый вид: базисными переменными являются переменные Х5, Х6, Х7, правые части неотрицательны. Исходное опорное решение, дающее координаты исходной угловой точки, имеет вид Х = (0, 0, 0, 0, 2, 12, 6)т.

Все остальные вычисления и действия удобно производит в табличной форме (табл. 1 – 3).

Решение задачи потребовало три итерации, каждой из которых соответствует симплекс-таблица.

В первую строку первой симплекс-таблицы занесены все данные первого уравнения, во вторую – второго и т.д.

В каждой из таблиц во втором столбце (Бx) указаны базисные неизвестные. Неизвестные, не входящие в базис, равны нулю. Значения базисных неизвестных записаны в третьем столбце (X0). Нижний элемент этого столбца является значением критерия оптимальности на данном шаге. В первом столбце (Pj) представлены коэффициенты при базисных неизвестных, взятые из критерия оптимальности. Каждый из столбцов X1X4 соответствует основным переменным задачи, а столбцов X5X7 – дополнительным переменным задачи. Последние элементы этих столбцов образуют нижнюю строку, содержащую элементы ∆J. С их помощью определяется, достигнут ли оптимум, а если не достигнут, то какое небазисное неизвестное следует ввести в базис, чтобы улучшить план. Элементы последнего столбца (θ) позволяют найти то из прежних базисных неизвестных, которое следует вывести из базиса, чтобы улучшить план. Разрешающий элемент, расположенный на пересечении столбца, вводимого в базис неизвестного, и строки неизвестного, выводимого из базиса, выделен в каждой таблице.

Рассмотрим первую симплексную таблицу решения задачи.

План задачи находится в столбцах Бх и Х0.

Элементы столбцов Х1 – Х7 являются коэффициентами замещения неизвестных. Они показывают, в каком соотношении любые из неизвестных могут заменить базисные переменные в плане данного шага.

Элементы нижней строки столбцов Х1 – Х7 показывают размер уменьшения значения критерия оптимальности от замены базисных неизвестных Хj.

Показатель Δj рассчитывается перемножением элемента первого столбца таблицы (Pj) на элемент столбца Хj с последующим вычитанием соответствующего элемента Pj.

После нахождения L0 и Δj, проверяется условий оптимальности (все Δj > 0) и неразрешимости (если найдется хотя бы один Δj < 0 такой, что все элементы соответствующего столбца отрицательны).

Наличие отрицательных Δj свидетельствует о том, что найденный план производства не является оптимальным, так как имеются возможности увеличения прибыли.

В качестве разрешающего столбца (неизвестной) может быть взят любой столбец, для которого оценочный коэффициент отрицательный. Однако за разрешающий столбец обычно принимают столбец, для которого отрицательный оценочный коэффициент принимает наименьшее значение.

Для определения неизвестного, которое необходимо вывести из базиса, используют показатели последнего столбца θ. Он получен путем деления элемента третьего столбца Х0 на элемент столбца неизвестного, вводимого в базис следующего шага. Параметр θ показывает, какой ресурс нас лимитирует, поэтому из базиса выводится переменная, соответствующая наименьшему положительному значению θ.

Строка в новой таблице, соответствующая разрешающей, получается из разрешающей строки делением всех элементов на разрешающий элемент.

Столбцы, соответствующие базисным неизвестным, являются единичными, причем единица стоит на пересечении строки и столбца с одинаковыми переменными.

После заполнения новой таблицы (всякая новая таблица является новой по отношению к рассматриваемой) снова проверяется выполнение условий оптимальности и разрешимости задачи.

В третьей симплекс-таблице выполняется условие оптимальности. Решение задачи прекращается. Максимальное значение линейной формы: LОПТ = 18.

Ответ: оптимальное решение х* = (0.5; 0; 0; 2.5), т.е. х1* = 0.5, х2* = 0, х3* = 0, х4* = 2.5.

Таблица 1

Симплексная таблица первого плана задачи

Pi

Бx

X0

X1

X2

X3

X4

X5

X6

X7

θ

0

X5

2

-1

2

-1

1

1

0

0

2

0

X6

12

2

1

1

-2

0

1

0

-

0

X7

6

2

3

4

2

0

0

1

3

j

0

-1

1

1

-7

0

0

0

Таблица 2

Симплексная таблица второго плана задачи

Pi

Бx

X0

X1

X2

X3

X4

X5

X6

X7

θ

7

X4

2

-1

2

-1

1

1

0

0

-

0

X6

18

4

4

5

0

0

1

1

4.5

0

X7

2

4

-1

6

0

-2

0

1

0.5

j

14

-8

15

-6

0

7

0

0

Таблица 3

Симплексная таблица третьего плана задачи

Pi

Бx

X0

X1

X2

X3

X4

X5

X6

X7

7

X4

2.5

0

1.75

0.5

1

0.5

0

0.25

0

X6

4

0

1.25

-0.25

0

0.5

0.25

0

1

X1

0.5

1

-0.25

1.5

0

-0.5

0

0.25

j

18

0

13

6

0

3

0

2

Задача 2

Условие

Решить задачу применив симплекс-метод к соответствующей двойственной задаче.

х1 – х2 – 6х3 + 2х4 + 12х5min

1 – х2 + х3 + х4 + 2х5 ≥ 3

-x1 + 2x2 – 2х3 + 3х4 + х5 ≥ 2

х1 – х2 + 3х3 + х4 + 3х5 ≥ 1

Решение

Запишем двойственную задачу:

2y1 – y2 + y3 ≤ 1

-y1 + 2y2 - y3 ≤ -1

y1 – 2y2 + 3y3 ≤ -6

y1 + 3y2 + y3 ≤ 2

2y1 + y2 + 3y3 ≤ 12

max(3y1 + 2y2 + y3) - ?

Сведём задачу к каноническому виду:

2y1 – y2 + y3 + y4 = 1

-y1 + 2y2 - y3 + y5 = -1

y1 – 2y2 + 3y3 + y6 = -6

y1 + 3y2 + y3 + y7 = 2

2y1 + y2 + 3y3 + y8 = 12

max(3y1 + 2y2 + y3) - ?

Все остальные вычисления и действия удобно производит в табличной форме (табл. 46).

Таблица 4

Симплексная таблица первого плана задачи

Pi

Бy

y0

3

2

1

0

0

0

0

0

θ

y1

y2

y3

y4

y5

y6

y7

y8

0

y4

1

2

-1

1

1

0

0

0

0

0.5

0

y5

-1

-1

2

-1

0

1

0

0

0

1

0

y6

-6

1

-2

3

0

0

1

0

0

-

0

y7

2

1

3

1

0

0

0

1

0

2

0

y8

12

2

1

3

0

0

0

0

1

6

j

0

-3

-2

-1

0

0

0

0

0

Таблица 5

Симплексная таблица второго плана задачи

Pi

Бy

y0

3

2

1

0

0

0

0

0

θ

y1

y2

y3

y4

y5

y6

y7

y8

3

y1

0.5

1

-0.5

0.5

0.5

0

0

0

0

-

0

y5

-7

0

0

2

0

1

1

0

0

0

y6

-8

0

-5

2

0

0

1

-1

0

1.6

0

y7

1

0

5

0

0

1

0

1

0

0.2

0

y8

11

0

2

2

-1

0

0

0

1

5.5

j

1.5

0

-3.5

0.5

1.5

0

0

0

0

Таблица 6

Симплексная таблица третьего плана задачи

Pi

Бy

y0

3

2

1

0

0

0

0

0

y1

y2

y3

y4

y5

y6

y7

y8

3

y1

0.6

1

0

0.5

0.5

0.1

0

0.1

0

0

y5

-7

0

0

2

0

1

1

0

0

0

y6

-7

0

0

2

0

1

1

0

0

2

y2

0.2

0

1

0

0

0.2

0

0.2

0

0

y8

10.6

0

0

2

-1

-0.4

0

-0.4

1

j

2.2

0

0

0.5

1.5

0.3

0

0.3

0

y4 ↔ x1 x1 = 1

y5 ↔ x2 x2 = 0

y6 ↔ x3 x3 = 0

y7 ↔ x4 x4 = 1

y8 ↔ x5 x5 = 0

Ответ: оптимальное решение х* = (1; 0; 0; 10), т.е. х1* = 1, х2* = 0, х3* = 0, х4* = 1, х5* = 0.

Задача 3

Для рытья котлована объёмом 1440 м3 строители получили три экскаватора. Мощный экскаватор производительностью 22.5 м3/час расходует в час 10 литров бензина. Аналогичные характеристики среднего экскаватора – 10 м3/час и 10/3 л/час, малого – 5 м3 и 2 л/час. Экскаваторы могут работать одновременно, не мешая друг другу. Запас бензина у строителей ограничен и равен 580 литров. Если рыть котлован только малым экскаватором, то бензина заведомо хватит, но это будет очень долго. Каким образом следует использовать имеющуюся технику, чтобы выполнить работу как можно скорее?

Решение

Пусть экскаваторы работали x1, x2, x3 (час) соответственно, тогда

22.5x1 + 10x2 + 5x3 = 1440 – объем работ

10x1 + 10/3 x2 + 2x3 ≤ 580 – ограничения по расходу бензина

x1, x2, x3 ≥ 0

α = max(x1, x2, x3) → min

Значение α равно наибольшему из значений x1, x2, x3 и это значение нужно взять наименьшим.

Решим задачу графически.

Множество допустимых значений – фигура ABCD.

Определим координаты точки A:

22.5x1 + 10x2 + 5·0 = 1440

10x1 + 10/3 x2 + 2·0 = 580

30x1 + 10x2 = 1740

7.5x1 = 300

x1 = 40 (час)

x2 = (1440 – 22.5·40)/10 = 54 (час)

Определим координаты точки B:

22.5x1 + 10·0 + 5x3 = 1440

10x1 + 10/3 ·0 + 2x3 = 580

45x1 + 10x3 = 2880

50x1 + 10x3 = 2900

5x1 = 20

x1 = 4

x3 = (1440 – 22.5·4)/5 = 270

Итак, определены координаты всех точек:

A(40;54;0)

B(4;0;270)

C(64;0;0)

D(58;0;0)

Искомое решение задачи – точка A.

Ответ: оптимальный режим работы экскаваторов: Мощный экскаватор – 40часов, Средний экскаватор – 54 часа, Малый экскаватор – не используется.

Задача 4

В пекарне для выпечки четырех видов хлеба используется мука двух сортов, маргарин и яйца. Имеющееся оборудование, производственные площади и поставки продуктов таковы, что в сутки можно переработать не более 290 кг муки первого сорта, 150 кг муки второго сорта, 50 кг маргарина, 1280 шт. яиц. В таблице приведены нормы расхода продуктов, а также прибыль от продажи 1 кг хлеба каждого вида:

Таблица 7

Наименование продукта

Нормы расхода на 1 кг хлеба (по видам)

1

2

3

4

мука 1 сорта, кг

0.5

0.5

0

0

мука 2 сорта, кг

0

0

0.5

0.5

маргарин, кг

0.125

0

0

0.125

яйцо, шт.

2

1

1

1

прибыль, за 1 кг

14

12

5

6

Требуется определить суточный план выпечки хлеба, максимизирующий прибыль.

Решение

0.5x1 + 0.5x2 + 0·x3 + 0·x4 ≤ 290

x1 + 0·x2 + 0.5x3 + 0.5x4 ≤ 150

0.125x1 + 0·x2 + 0·x3 + 0.125x4 ≤ 50

2x1 + 1x1 + 1x3 + 1x4 ≤ 1280

14x1 + 12x2 + 5x3 + 6x4 → max

Все остальные вычисления и действия удобно производит в табличной форме (табл. 8 – 11).

Таблица 8

Симплексная таблица первого плана задачи

Pi

Бx

X0

14

12

5

6

0

0

0

0

θ

x1

x2

x3

x4

x5

x6

x7

x8

0

x5

290

0.5

0.5

0

0

1

0

0

0

580

0

x6

150

0

0

0.5

0.5

0

1

0

0

0

x7

50

0.125

0

0

0.125

0

0

1

0

400

0

x8

1280

2

1

1

1

0

0

0

1

640

j

0

-14

-12

-5

-6

0

0

0

0

Таблица 9

Симплексная таблица второго плана задачи

Pi

Бx

X0

14

12

5

6

0

0

0

0

θ

x1

x2

x3

x4

x5

x6

x7

x8

0

x5

90

0

0.5

0

-0.5

1

0

-4

0

180

0

x6

150

0

0

0.5

0.5

0

1

0

0

14

x1

400

1

0

0

1

0

0

8

0

0

x8

120

0

-1

1

1

-4

0

0

1

-

j

5600

0

-12

-5

-8

0

0

112

0

Таблица 10

Симплексная таблица третьего плана задачи

Pi

Бx

X0

14

12

5

6

0

0

0

0

θ

x1

x2

x3

x4

x5

x6

x7

x8

12

x2

180

0

1

0

-1

2

0

-8

0

0

x6

150

0

0

0.5

0.5

0

1

0

0

300

14

x1

400

1

0

0

1

0

0

8

0

0

x8

300

0

0

1

0

-2

0

-8

1

300

j

7760

0

0

-5

-4

24

0

16

0

Таблица 11

Симплексная таблица четвертого плана задачи

Pi

Бx

X0

14

12

5

6

0

0

0

0

x1

x2

x3

x4

x5

x6

x7

x8

12

x2

180

0

1

0

-1

2

0

-8

0

5

x3

300

0

0

1

1

0

2

0

0

14

x1

400

1

0

0

1

0

0

8

0

0

x8

300

0

0

0

-1

-2

-2

-8

1

j

9260

0

0

0

1

12

10

16

0

Ответ: суточный план выпуска продукции: хлеб 1-го вида – 400 кг, 2-го вида – 180 кг 3-го вида – 300 кг, 4-го вида – 0 кг.

Список использованных источников

  • Зубков М.Я. Математические структуры и математическое моделирование экономики: Учебное пособие. Вып. 3в. Математическое программирование. – М.: Изд-во УРАО, 1996. – 68 с.

  • Алешина И.Ф. Анализ и оценка хозяйственных решений: Методические указания к изучению курса. – М.: Изд-во РОУ, 1996. – 28 с.

Похожие работы:

  • Теория принятий решений

    Реферат >> Теория организации
    ... Основы теории принятия решений разработаны Джоном фон Нейманом и Отто Моргенштерном. По мере усложнения задач появилось ... довольно много классификаций задач теории принятия решений: с учетом времени: статические и динамические, по количестве целей ...
  • Теория принятия решений

    Учебное пособие >> Менеджмент
    ... а также контрольные вопросы к экзамену по предмету "Теория принятия решений". . Основные понятия и структура ... "Теории принятия решений" в условиях противодействия называется теорией игр. А так как в основном условия задач в "Теории принятия решений" ...
  • Теория принятия решений: математические методы для выбора специалиста на должность администратора сети

    Реферат >> Информатика, программирование
    ... информации, методы контроля. Предлагает технологии решения задач по всем этапам обработки информации. Разрабатывает ... и Лапласа уже давно и прочно вошли в теорию принятия решений. Критерий Вальда В соответствии с критерием Вальда ...
  • Теория принятия решений

    Курсовая работа >> Информатика, программирование
    Курсовая работа По дисциплине «Теория принятия решения» Екатеринбург, 2007 Описание проблемы ... достичь высокого уровня автоматизации в решении задач разработки систем управления, сбора, ... примера можно привести часто возникающую задачу связи SCADA-системы с ...
  • Принятие решений в экологической геоинформационной системе на основе нечеткой модели классификации

    Доклад >> Информатика, программирование
    ... принятия решений становится центральным направлением автоматизации деятельности лица, принимающего решения (ЛПР). К задачам ЛПР относится принятие решений ... системы принятия решений был избран аппарат теории нечетких ... для своей реализации по сравнению с ...
  • Принятие решений по ценообразованию

    Курсовая работа >> Бухгалтерский учет и аудит
    ... а какой нет. Согласно теории предельной полезности и потребительского выбора ... конкретные экономические и социальные задачи оно будет решать в ... Принятие решений по ценам происходит сразу по нескольким направлениям: решение по уровню цен, решение по ...
  • Принятие решений в условиях неопределенности

    Реферат >> Математика
    ... обязан принимать решения. В теории принятия решений есть специальный термин: ЛПР — Лицо, Принимающее Решения. Ниже по тексту ... таких экстремальных задач. Методы теории вероятностей и математической статистики помогают принимать решения в условиях ...
  • Математические методы в теории принятия решений

    Курсовая работа >> Математика
    ... : ММЛ Курсовая работа по дисциплине: "Математические методы в теории принятия решений" Выполнил: студент 4 ... задачи принятия решения является: Альтернативы (варианты, планы, допустимые альтернативы) Исходы (Результаты) Оптимальные решения (Наилучшие решения ...
  • Принятие решений в условиях неопределённости

    Курсовая работа >> Менеджмент
    ТЕОРИЯ ПРИНЯТИЯ РЕШЕНИЙ Тема 5: Принятие решений в условиях ... свести задачу обоснования решений в условиях стохастического риска к задаче принятия решений в ... . Простые решения подготавливаются по известным алгоритмам и исполняются по отработанным схемам ...
  • Принятие решения человеком

    Реферат >> Психология
    ... различных областей на­учного знания в разработке теории принятия решения, с одной стороны, создает определенные ... задачу и из решения мыслительной задачи. При­нятие решения в любых ситуациях на психологическом уровне осуществляется именно по данному ...