Реферат : Химические преобразователи солнечной энергии 


Полнотекстовый поиск по базе:

Главная >> Реферат >> Химия


Химические преобразователи солнечной энергии




Министерство образования РФ

МГЭГ №26.

Химические преобразователи солнечной энергии.

Выполнил:

ученик 11В класса

Прушинский Евгений.

Томск 2001.

Введение.

Современная энергетика опирается главным образом на такие источники, в которых запасена солнечная энергия (СЭ). Прежде всего это ископаемые виды топлива, для образования которых требуются миллионы лет. В своей деятельности человечество с постоянно возрастающими темпами растрачивает их поистине гигантский запас. Истощение месторождений нефти, угля и природного газа неизбежно, и, по различным оценкам, время, отпущенное на то, чтобы переключиться на альтернативные источники энергии (солнечную, океаническую, ветровую, вулканическую), составляет 100-150 лет. Большой интерес также представляют поиски химических способов аккумулирования СЭ.

Системы, аккумулирующие солнечную энергию, и требования к ним.

Диапазон использования солнечного излучения чрезвычайно широк. Энергией Солнца питаются высоко температурные установки, концентрирующие поток лучей с помощью зеркал. В качестве аккумуляторов энергии в них используются как физические теплоносители, так и некоторые неорганические вещества, способные к циклическим реакциям термического разложения- синтеза (оксиды, гидраты, сульфаты, карбонаты). Устройства другого типа преобразуют энергию излучения в электрическую, тепловую или энергию химических реакций посредством фотофизических или фотохимических процессов. Среди фотохимических путей преобразования СЭ наиболее значимыми являются следующие:

  • Фотокаталитическое разложение воды под действием металлокомплексных соединений;

  • Создание «солнечных фотоэлектролизёров», основанных на фотоэлектронных переносах или фотогальваническом эффекте;

  • Фотосинтез - наиболее эффективный биохимический способ преобразования энергии Солнца.

Наряду с ними значительный интерес представляют химические системы, способные аккумулировать СЭ в виде энергии напряжения химических связей. Такие системы удовлетворять требованиям , которые относятся как к фотохромному реагенту А и продукту В, так и к параметрам процесса.

А↔В+ΔН.

Основные требования сводятся следующему:

  • Реагент А должен поглощать свет в УФ и видимых частях спектра (400-650 нм), так как более 50% СЕ, достигающей Земли, распределено в области 300-700 нм. Фотоизомер В, наоборот, не должен поглощать в этой области, чтобы избежать фотоинициирования обратной реакции. Во избежание потерь энергии оба компонента должны быть нелюминесцирующими;

  • Обратная реакция должна иметь значительный тепловой эффект (>300 Дж/г);

  • Для длительного сохранения запасённой фотопродуктом В энергии активационный барьер термического перехода В→А должен быть достаточно большим – порядка 100 кДж/моль;

  • Прямая фотохимическая реакция должна характеризоваться высоким квантовым выходом, обратная подвержена каталитическому ускорению или тепловому инициированию;

  • Прямой и обратный процессы должны характеризоваться высокими степенями превращения и отсутствием побочных продуктов;

  • Вещества А и В должны достаточно дешёвыми, доступными, нетоксичными, взрывобезопасными и химически устойчивыми по отношению к атмосферной влаге и воздуху.

Среди органических систем, удовлетворяющих указанным выше условиям, наиболее важными являются следующие:

  • Валентная изомеризация нитрон – оксазиридин;

  • Геометрическая (Е)↔(Z) изомеризация производных индиго;

  • Геометрическая изомеризация N – ацилированных аминов и нитрилов с последующей внутримолекулярной перегруппировкой;

  • Термически обратимая реакция фотодимеризации производных антрацена.

Циклические реакции фотораспада – термической рекомбинации свойственны и некоторым неорганическим системам, например фоторазложению нитрозилхлорида:

NOCl ↔NO + 1/2Cl²

Основное преимущество органических систем перед неорганическими связано с возможностью широкого варьирования строения молекул с целью улучшения их спектральных характеристик как аккумуляторов и преобразователей СЭ.

Система норборнадиен – квадрициклан.

Исследования, проводимые в последние годы, указывают на перспективность использования систем, для которых характерна фотоинициируемая валентная изомеризация по типу (2π+2π) – циклоприсоединения. В этих реакциях две π – связи преобразуются в две σ – связи с образованием циклобутанового производного.

Как правило, в подобных системах термодинамическое равновесие полностью смещено в сторону реагента.

Рассмотрим более детально один из наиболее перспективных объектов для такого рода превращений – норборнадиен (бицикло [2.2.1] гепта – 2,5 – диен) и его производные. Соединения норборнадиенового ряда могут быть достаточно легко синтезированы по реакции дневного синтеза. Реагентами для получения норборнадиен производных являются крупнотоннажные продукты органического синтеза – циклопентадиен и ацетилен.

Норборнадиен – интересная и во многом уникальная молекула. Это редкий пример 1,4 – диеновых углеводородов, в которых такое расположение двойных связей является наиболее термодинамически устойчивым.

Использование сенсиблизаторов.

Фотопревращение незамещённого норборнадиена в квадрициклан характеризуется низким квантовым выходом, который, однако, может быть значительно повышен при использовании сенсибилизаторов. Наилучшие результаты получены при использовании солей меди или фенилкетонов. Однако и в этих системах имеются недостатки: во-первых, они работают только в УФ – области спектра; во-вторых, комплексы Cu(|) окисляются до соединений Cu(||), не проявляющих фотоактивности, а кетоны химически взаимодействуют с норборнадиеном при облучении, образуя продукты фотоприсоединения. Эти причины затрудняют практическое использование такого рода сенсибилизаторов.

Заключение.

Глобальная экологическая проблема предъявляет к химико – технологическим процессам всё более жёсткие требования. В этих условиях фотохимические методы, которые позволяют весьма избирательно подводить энергию и использовать её в химических превращениях, могут сыграть важную роль. Свет представляет собой как бы безынерционный химический реагент, не дающий отходов. Тем не менее в настоящее время фотохимические процессы в крупномасштабном производстве имеют подчинённое значение прежде всего потому, что ещё не решены сложные сопутствующие технические проблемы. Всё сказанное выше в полной мере относится к системе норборнадиен – квадрициклан. Её практическая ценность очевидна. В некоторых развитых странах уже проводятся разработки малогабаритных экспериментальных установок, работающих на норборнадиене, для обогрева зданий, садовых домиков, теплиц.

Однако на пути крупномасштабного использования тепловой энергии, выделяющейся при каталитическом превращении квадрициклана в норборнадиен, имеются препятствия экономического характера. Так, в настоящее время стоимость тепла (в виде водяного пара), получаемого этим способом, в 50 – 100 раз превышает аналогичные показатели для традиционных методов. Необходима дальнейшая модификация этих систем. Основные направления усовершенствования: увеличение числа рабочих циклов до 10000 и выше, повышение квантового выхода и конверсии норборнадиена в каждом цикле, а также удешевление синтеза производных норборнадиена, обладающих подходящими спектральными характеристиками. Тем не менее создание малогабаритных установок может быть оправданно и сегодня – для солнечных регионов, удалённых от других источников энергии, для искусственных спутников.

Содержание:

  1. Введение.

  2. Системы, аккумулирующие солнечную энергию, и требования к ним.

  3. Система норборнадиен – квадрициклан.

  4. Использование сенсиблизаторов.

  5. Заключение.

Список литературы:

  1. Эткинс П. Физическая химия. Мир, 1980.

  2. Беккер Г. О. Введение в фотохимию органических соединений. Химия1976.

  3. Брень В. А. Успехи химии.1991.

  4. Флид В.Р. Журнал общей химии.1992.

Похожие работы:

  • Солнечная энергетика

    Реферат >> Физика
    ... среди альтернативных и возобновляемых источников энергии занимают фотоэлектрические преобразователи солнечной энергии, изучение которых превратилось в ... , электрохимическое осаждение, трафаретную печать, химическое осаждение из газовой фазы и распыление ...
  • Нетрадиционные и возобновляемые источники энергии

    Реферат >> Физика
    ... имеются различные виды энергии - энергия волн и приливов; энергия химических связей газов, ... энергия. 2 1.1. Упряжь для ветра. 3 2. Энергия Солнца. 7 2.1. Преобразователи солнечной энергии. 7 2.2. Концентраторы солнечного света. 8 2.3. Жилой дом с солнечным ...
  • Альтернативные источники энергии и возможности их применения в России

    Реферат >> Физика
    ... природы, однако этот способ преобразования химической энергии в тепловую сохраняется и совершенствуется уже на ... : были изобретены аккумуляторы, топливные элементы, преобразователи солнечной энергии в электрическую и - уже в середине ХХ столетия ...
  • Нетрадиционные источники энергии в Крыму

    Курсовая работа >> Наука и техника
    ... до 100 МВт. Мощность фотоэлектрических преобразователей солнечной энергии, внедряемых в Крыму к 2010 г., может составить ... отходов получать минеральные вещества, используемые в химической промышленности, а также применять их для ...
  • Нетрадиционные источники энергии в Крыму

    Курсовая работа >> Наука и техника
    ... до 100 МВт. Мощность фотоэлектрических преобразователей солнечной энергии, внедряемых в Крыму к 2010 г., может составить ... отходов получать минеральные вещества, используемые в химической промышленности, а также применять их для ...
  • Использование альтернативных источников энергии

    Реферат >> Химия
    ... может осуществляться непосредственное прямое преобразование химической энергии сжигаемых водорода и кислорода в ... альтернативных и возобновляемых источников энергии занимают фотоэлектрические преобразователи солнечной энергии, изучение которых превратилось в ...
  • Источники энергии

    Реферат >> Физика
    ... , или при использовании запасенной в нем химической энергии, преобразовании ее в электрическую на тепловых ... . Но, тем не менее, станции-преобразователи солнечной энергии строят и они работают. С 1988 года ...
  • Нетрадиционные источники энергии

    Реферат >> Наука и техника
    ... не менее, станции-преобразователи солнечной энергии строят, и они работают. Солнечную радиацию при помощи гелиоустановок ... , потенциально имеются различные виды энергииэнергия волн и приливов; энергия химических связей газов, солей и других ...
  • Энергия

    Реферат >> Физика
    ... получили фотоэлектрические преобразователи и системы термодинамического преобразования с применением тепловых двигателей. Солнечная энергия преобразуется в электрическую ...
  • Солнечно-Земные связи и их влияние на человека

    Курсовая работа >> Авиация и космонавтика
    ... . Открыто там много и других химических элементов (кислород, кальций, железо, ... много разных предположений об источниках солнечной энергии. Но только новые открытия ... длины. Животные и люди являются преобразователями энергии и неотделимы от мира растений и ...