Реферат : Толуол: свойства, применение, получение 


Полнотекстовый поиск по базе:

Главная >> Реферат >> Химия


Толуол: свойства, применение, получение




Реферат на тему

«Арены. Толуол.»

Выполнил

Проверила:

2002 г.

План:

1. Арены

Стр. 3

2. Толуол – формула, строение.

Стр. 4

3. Физические свойства.

Стр. 5

4. Химические свойства

Стр. 6

5. Получение

Стр. 9

6. Применение

Стр. 10

7. Список литературы

Стр. 11

1. Арены.

Арены или ароматические углеводороды – это соединения, молекулы которых содержат устойчивые циклические группы атомов (бензольные ядра) с особым характером химических связей.

О
бщая формула класса: CnH2n-6 .

Простейшими представителями класса являются бензол и толуол:

М
ногоядерные арены: нафталин С10Н8, антрацен С14Н10 и др.

Термин "ароматические соединения" возник давно в связи с тем, что некоторые представители этого ряда веществ имеют приятный запах. Однако в настоящее время в понятие "ароматичность" вкладывается совершенно иной смысл.

Ароматичность молекулы означает ее повышенную устойчивость, обусловленную делокализацией -электронов в циклической системе.

Критерии ароматичности аренов:

  1. Атомы углерода в sp2-гибридизованном состоянии образуют циклическую систему.

  2. Атомы углерода располагаются в одной плоскости (цикл имеет плоское строение).

  3. Замкнутая система сопряженных связей содержит
    4n+2 -электронов (n – целое число).

2
. Толуол – формула, строение.

Толуол по своему строению подобен бензолу, отличием является лишь замещение одного атома водорода на группу (CH3).

Рассмотрим строение бензола.

В 1825 году английский исследователь Майкл Фарадей при термическом разложении ворвани выделил пахучее вещество, которое имело молекулярную формулу C6Н6. Это соединение, называемое теперь бензолом, является простейшим ароматическим углеводородом.

Р
аспространенная структурная формула бензола, предложенная в 1865 году немецким ученым Кекуле, представляет собой цикл с чередующимися двойными и одинарными связями между углеродными атомами:

Однако физическими, химическими, а также квантово-механическими исследованиями установлено, что в молекуле бензола нет обычных двойных и одинарных углерод–углеродных связей. Все эти связи в нем равноценны, эквивалентны, т.е. являются как бы промежуточными "полуторными " связями, характерными только для бензольного ароматического ядра. Оказалось, кроме того, что в молекуле бензола все атомы углерода и водорода лежат в одной плоскости, причем атомы углерода находятся в вершинах правильного шестиугольника с одинаковой длиной связи между ними, равной 0,139 нм, и все валентные углы равны 120°. Такое расположение углеродного скелета связано с тем, что все атомы углерода в бензольном кольце имеют одинаковую электронную плотность и находятся в состоянии sp2 - гибридизации. Это означает, что у каждого атома углерода одна s- и две p- орбитали гибридизованы, а одна p- орбиталь негибридная. Три гибридных орбитали перекрываются: две из них с такими же орбиталями двух смежных углеродных атомов, а третья – с s- орбиталью атома водорода. Подобные перекрывания соответствующих орбиталей наблюдаются у всех атомов углерода бензольного кольца, в результате чего образуются двенадцать s- связей, расположенных в одной плоскости.

Четвертая негибридная гантелеобразная p- орбиталь атомов углерода расположена перпендикулярно плоскости направления s- связей. Она состоит из двух одинаковых долей, одна из которых лежит выше, а другая - ниже упомянутой плоскости. Каждая p- орбиталь занята одним электроном. р- Орбиталь одного атома углерода перекрывается с p- орбиталью соседнего атома углерода, что приводит, как и в случае этилена, к спариванию электронов и образованию дополнительной p- связи. Однако в случае бензола перекрывание не ограничивается только двумя орбиталями, как в этилене: р- орбиталь каждого атома углерода одинаково перекрывается с p- орбиталями двух смежных углеродных атомов. В результате образуются два непрерывных электронных облака в виде торов, одно из которых лежит выше, а другое – ниже плоскости атомов (тор – это пространственная фигура, имеющая форму бублика или спасательного круга). Иными словами, шесть р- электронов, взаимодействуя между собой, образуют единое p- электронное облако, которое изображается кружочком внутри шестичленного цикла:

С
теоретической точки зрения ароматическими соединениями могут называться только такие циклические соединения, которые имеют плоское строение и содержат в замкнутой системе сопряжения (4n+2) p- электронов, где n – целое число. Приведенным критериям ароматичности, известным под названием правила Хюккеля, в полной мере отвечает бензол. Его число шесть p- электронов является числом Хюккеля для n=1, в связи с чем, шесть p- электронов молекулы бензола называют ароматическим секстетом.

3. Физические свойства.

Бензол и его ближайшие гомологи – бесцветные жидкости со специфическим запахом. Ароматические углеводороды легче воды и в ней не растворяются, однако легко растворяются в органических растворителях – спирте, эфире, ацетоне.

Физические свойства некоторых аренов представлены в таблице.

Название

Формула

t°.пл.,
°C

t°.кип.,
°C

d420

Бензол

C6H6

+5,5

80,1

0,8790

Толуол (метилбензол)

С6Н5СH3

-95,0

110,6

0,8669

Этилбензол

С6Н5С2H5

-95,0

136,2

0,8670

Ксилол (диметилбензол)

С6Н4(СH3)2

орто-

-25,18

144,41

0,8802

мета-

-47,87

139,10

0,8642

пара-

13,26

138,35

0,8611

Пропилбензол

С6Н5(CH2)2CH3

-99,0

159,20

0,8610

Кумол (изопропилбензол)

C6H5CH(CH3)2

-96,0

152,39

0,8618

Стирол (винилбензол)

С6Н5CH=СН2

-30,6

145,2

0,9060

4. Химические свойства.

Все свойства толуола можно разделить на 2 типа:

А) реакции, затрагивающие бензольное кольцо,

Б) реакции, затрагивающие метильную группу.

Реакции в ароматическом кольце. Метилбензол вступает во все реакции электрофильного замещения, свойственные для бензола.

  1. Нитрирование:







1-Метил-2-нитробензол 1-Метил-4-нитробензол

  1. Хлорирование толуола может производиться путём пропускания через толуол газообразного хлора в присутствии хлорида алюминия (реакция проводится в темноте). Хлорид алюминия играет при этом роль катализатора. В этом случае образуется 2- и 4-замещённый изомеры:

1-хлоро-4-метилбензол



3) Сульфирование метилбензола концентрированой серной кислотой тоже приводит к образованию смеси 2- и 4-замещённого изомеров:



Механизм всех реакций электрофильного замещения подобен механизму сообветствующих реакций бензола. В этих реакциях 3-замещённые изомеры образуются в незначительных количествах и ими можно пренебречь.

Реакции в боковой цепи. Метильная группа в метилбензоле может вступать в определённые реакции, характерные для алканов, но также и в другие реакции, не характерные для алканов.

Подобно алканам, метильная группа может галогенироваться по радикальному механизму. Для осуществления этой реакции хлор продувают через кипящий метилбензол в присутствии солнечного света или источника ультрафиолетового излучения.

Обратим внимание, что эта реакция представляет собой замещение. Дальнейшее галогенирование приводит к образованию следующих соединений:

Бромирование метилбензола осуществляется при аналогичных условиях и приводит к образованию соответствующих бромозамещающенных соединений.

Метильная боковая цепь в толуоле подвергается окислению даже такими сравнительно мягкими окислителями, как оксид марганца (IV):











Более сильные окислители, например перманганат калия, вызывают дальнейшее окисление:











5. Получение.

Известны следующие способы получения ароматических углеводородов.

1

500°C

) Каталитическая дегидроциклизация алканов, т.е. отщепление водорода с одновременной циклизацией (способ Б.А.Казанского и А.Ф.Платэ). Реакция осуществляется при повышенной температуре с использованием катализатора, например оксида хрома.

+ 4H2



2

300°C,Pd


+ 32

) Каталитическое дегидрирование циклогексана и его производных (Н.Д.Зелинский). В качестве катализатора используется палладиевая чернь или платина при 300°C.




3) Циклическая тримеризация ацетилена и его гомологов над активированным углем при 600°C (Н.Д.Зелинский).

4) Сплавление солей ароматических кислот со щелочью или натронной известью.


+ NaOH


+ Na2CO3



6. Применение.

Ароматические углеводороды являются важным сырьем для производства различных синтетических материалов, красителей, физиологически активных веществ. Так, бензол – продукт для получения красителей, медикаментов, средств защиты растений и др. Толуол используется как сырье в производстве взрывчатых веществ, фармацевтических препаратов, а также в качестве растворителя. Винилбензол (стирол) применяется для получения полимерного материала – полистирола.

Список литературы:

    1. М. Фримантл – «Химия в действии»

    2. CD-Informatica – «Химия для всех»

    3. О.С. Габриелян – «Химия 10 класс»

    4. Infinity – «Органическая химия: арены»



Похожие работы: