Курсовая работа : Редуктор для привода ленточного транспортера 


Полнотекстовый поиск по базе:

Главная >> Курсовая работа >> Промышленность, производство


Редуктор для привода ленточного транспортера




Федеральное агентство по образованию Российской Федерации Государственное образовательное учреждение среднего профессионального

«Новотроицкий политехнический колледж»

Редуктор для привода ленточного транспортера

Пояснительная записка

К курсовому проекту по дисциплине:

Техническая механика

КП 150803.12.00.00 ПЗ

Руководитель проекта

Сирченко Н.В.

Разработал

студент группы 208-МГ

Падалко С.С.





2010

Содержание

Введение

I. Общая часть
1. Краткое описание работы привода
1.1 Кинематическая схема привода
2. Специальная часть
2.1 Выбор электродвигателя, кинематический и силовой расчет привода
2.2 Расчет передачи редуктора на контактную выносливость
2.3 Предварительный расчет валов редуктора
2.4 Определение конструктивных размеров зубчатой пары, крышки и корпуса
2.5 Проверка долговечности подшипников
2.6 Подбор и расчет шпонок
2.7 Уточненный расчет валов
2.8 Подборка и расчет муфт
2.9 Выбор сорта масла
2.10 Сборка редуктора
Литература
Приложение А Задание на курсовое проектирование
Приложение Б Компоновка редуктора

Введение

Цель курсового проектирования – систематизировать, закрепить, расширить теоретические знания, а также развить расчетно-графические навыки студентов. Основные требования, предъявляемые к создаваемой машине: высокая производительность, надежность, технологичность, минимальные габариты и масса, удобство в эксплуатации и экономичность. В проектируемом редукторе используются зубчатые передачи.

Редуктором называют механизм, состоящий из зубчатых или червячных передач, выполненный в виде отдельного агрегата и служащий для передачи мощности от двигателя к рабочей машине. Назначение редуктора – понижение угловой скорости и повышение вращающего момента ведомого вала по сравнению с валом ведущим. Данный тип механизма является одним из самых распространенных в технике и комплекс расчетов, необходимый для обоснования его конструкции, охватывает многие разделы учебного курса: теоретическую механику, сопротивление материалов, теплотехнику, метрологию и пр. Поэтому грамотный расчет редуктора обеспечивает получение значительного опыта в проектировании механизмов и машин и применении полученных при обучении знаний на практике.

1. Краткое описание работы привода

В проекте необходимо спроектировать редуктор для ленточного транспортера, подобрать электродвигатель, муфту, для условий, оговоренных техническим заданием. Конструкция проектируемого редуктора состоит из чугунного литого корпуса, внутри которого размещены элементы передачи: ведущий и ведомый вал с косозубыми колесом и шестерней, а также опоры – подшипники качения, а также сопутствующие детали. Входной вал соединяется с двигателем посредством упругой втулочно-пальцевой муфты. Выходной вал посредством жестко компенсирующей муфты связан свалом звездочки цепной передачи. Редуктор работает в щадящем режиме, поскольку Ксут = 0,3. Поэтому представляется, что износ механизма в пределах срока службы будет незначительным.

2. Специальная часть

2.1 Выбор электродвигателя, кинематический и силовой расчет привода

Для выбора электродвигателя определяем КПД привода по формуле

[1. с.4]:

где КПД отдельных кинематических пар (цилиндрической, зубчатой передач, подшипников). Значения КПД выбираются как средние значения из рекомендуемого диапазона [1].

Требуемую мощность электродвигателя находят с учетом потерь, возникающих в приводе:

Диапазон возможных передаточных чисел открытой цепной передачи.

DUц=2 6

Ориентировочное значение общего передаточного числа привода

Угловая скорость вала электродвигателя

Выбираем двигатель АИР132S6 и заносим его параметры в таблицу 1.

Название

двигателя

Пары полюсов

Исполнение

Мощность

Число

вращений

d,мм

АИР132S6

5.5

1M1081

55

965

2.5

38

Таблица.1

Общее передаточное число привода:

Передаточное число цепной передачи

Определяем частоты вращения валов привода:

Определяем угловые скорости валов привода

Определяем мощности на валах привода:

Определяем крутящие моменты на валах привода:

Результаты расчета сводим в табл. 2.

Сводная таблица результатов кинематического расчета привода.

№ вала

Мощность Р,

кВт

Угловая скорость ω, с-1

Частота вращения n, мин-1

Крутящий момент М, Нм

1

5.287

101.05

965

52.3

2

5.287

101.05

965

52.3

3

5.099

25.27

241.3

201.8

4

5.099

25.27

241.3

201.8

5

4.6

12.27

120

365.9


2.2 РАСЧЕТ ПЕРЕДАЧИ РЕДУКТОРА НА КОНТАКТНУЮ ВЫНОСЛИВОСТЬ

Так как в задании нет особых требований в отношении габаритов по таблице 3.3 [1, c.34] принимаем для шестерни сталь 45 улучшенную с твердостью НВ 230, для колеса – сталь 45 улучшенную с твердостью НВ 200.

Допускаемые контактные напряжения определим по формуле 3.9 [1, c.33]:

(3.9 [1, c.33]):

где: σHlim b – предел контактной выносливости при базовом числе циклов.

По таблице 3.2 [1, c.34] предел контактной выносливости для углеродистых и легированных сталей с твердостью поверхностей зубьев менее НВ 350 и термообработкой (улучшение) находим по формуле:

σHlim b = 2.HB + 70;

КHL - коэффициент долговечности; при числе циклов нагружения больше базового, что имеет место при длительной эксплуатации редуктора, принимаем значение КHL = 1; [n] H = 1,15.

Тогда расчетные контактные напряжения

Вращающий момент на валу шестерни

М1=52,3 Н*м

Вращающий момент на валу колеса

М2=201,8 Н*м

KH - коэффициент, учитывающий неравномерность нагрузки по ширине венца 3.1 [1, с.32] для сталей с твердостью HB<350: KH = 1,25;

Принимаем коэффициент ширины венца по межосевому расстоянию bа =b/aω= 0,4.

Межосевое расстояние из условия контактной выносливости активных поверхностей зубьев

(3.8 [1,с.26])

Принимаем u=5.

Ближайшее стандартное значение аω= 130 мм.

Нормальный модуль зацепления

mn=(0.01ч0.02) aω=(0.01ч0.02)130=1.3ч2.6

принимаем mn=2мм

Примем предварительный угол наклона зубьев β=30° и определим число зубьев шестерни и колеса

число зубьев шестерни


Примем z1=19мм тогда z2= z1*u=19*5=95

Уточненное значение угла наклона зубьев

β=28°53`

Определим основные размеры шестерни и колеса: диаметры делительные:

Проверка:

Внешние диаметры шестерни и колеса по вершинам зубьев

ширина колеса

ширина шестерни

Определим коэффициент ширины шестерни по диаметру:

окружная скорость колес и степень точности передачи

при такой скорости следует принять 8 степень точности.

Для проверки контактных напряжений определяют коэффициент нагрузки:

где: КH - коэффициент, учитывающий распределение нагрузки по длине зуба, при симметричным расположении колес и твердости HB≤350 [1, табл.3.8] КH = 1,06;

КH - коэффициент, учитывающий распределение нагрузки между зубьями, [1, табл.3.4] КH = 1,07;

КHv - коэффициент, учитывающий динамическую нагрузку, для шевронных и косозубых колес при v  5 м/с, [1, табл.3.6] КHv = 1,0;

Проверяем контактные напряжения по формуле

(3.6 [1,ст26])

Условие прочности зубьев при проверке на контактную выносливость выполняется.

Определим силы, действующие в зацеплении:

Окружная для шестерни и колеса:

Радиальная для шестерни и колеса:

Проверка зубьев на выносливость по напряжениям изгиба [1,3.31]

Формула для проверочного расчета зубьев цилиндрической прямозубой передачи на изгиб имеет вид (формула 3.31 [1, c.43]):

( 3.25 [1, c.38])

где: P-окружная сила действующая в зацеплении

KF – коэффициент нагрузки.

ΥF – расчетное напряжение зубьев при изгибе.

Yβ – коэффициент введен для компенсации погрешности.

KFа – коэффициент учитывающий неравномерность распределения нагрузки между зубьями.

b – ширина венца зуба колеса, b = 52 мм.

mn - окружной модуль зуба, mn = 3,57;

КF = KFβ . KFv

где: KFβ – коэффициент концентрации нагрузки, учитывающий неравномерность распределения нагрузки по длине зуба.

По таблице 3.7 [1, c.43], ГОСТ 21354-75 принимаем для консольно-расположенных относительно опор зубчатых колес, твердости поверхности колес НВ ≤ 350, значению значение KFβ = 1,38;

KFv – коэффициент динамичности, учитывающий динамическое воздействие нагрузки. По таблице 3.8 [1, c.43], для косозубых передач и передач с круговыми зубьями, принимая во внимание то, что для конических передач следует выбирать коэффициенты на 1 степень точности больше (8-й степенью точности изготовления колес), твердости поверхности колес НВ ≤ 350 и окружной скорости принимаем значение KFv = 1,3.

КF = 1,16 . 1,2 = 1,392

YF – коэффициент, прочности зуба по местным напряжениям в зависимости от z. Выбираем по ГОСТ 21354-75 значения YF из стандартного ряда для шестерни и колеса [1, c.35].

Для шестерни:

Для колеса:

При этом YF1 = 3,84, YF2 = 3,60 [1, c.42].

[σ]F – предельно допускаемое напряжение при проверке зубьев на выносливость по напряжениям изгиба. По формуле

(3.24 [1, c.36])

где: σ0Flim b – предел выносливости при отнулевом цикле изгиба. По таблице (3.9[1, c.37]) для стали 45 с термообработкой улучшением и твердостью поверхности колес НВ ≤ 350 принимаем значение σ0Flim b = 1,8 НВ.

для шестерни: σ0Flim b1 = 1,8 . 230 = 415 H/мм2;

для колеса: σ0Flim b2 = 1,8 . 200 = 360 H/мм2;

[nF] – коэффициент запаса прочности.

[nF] = [nF]' . [nF]''

где: [nF]' – коэффициент нестабильности свойств материала зубчатых колес, по таблице (3.9 [1,c.37]) для стали 40Х с термообработкой улучшением и твердостью поверхности колес НВ ≤ 350 принимаем значение [nF]' = 1,75;

[nF]'' – коэффициент способа получения заготовок зубчатого колеса [1, c.44], для поковок и штамповок [nF]'' = 1. [nF] = 1,75 . 1 = 1,75.

Найдем предельно допускаемые напряжения [σF] и отношения [σF]/YF при расчете зубьев на выносливость: для шестерни:

для колеса:

Меньшее значение отношения [σF]/YF получено для колеса, следовательно проверочный расчет проводим для зубьев колеса. Определим коэффициент Y и KF

Условие прочности зубьев при изгибе выполнено.

2.3 ПРЕДВАРИТЕЛЬНЫЙНЫЙ РАСЧЕТ ВАЛОВ РЕДУКТОРА

Расчет валов выполняем на кручение по пониженным допускаемым напряжениям.

Крутящие моменты в поперечных сечениях валов:

Ведущего: MК1 = M1 = 52.3 . 103 Н.мм

Ведомого: MК2 = M3 = 201.8 . 103 Н.мм

Ведущий вал.

Определим диаметр выходного конца вала по формуле:

(6.16[1, c.94])

где: [к] – допускаемое напряжение на кручение. Для материала валов - сталь 40Х нормализованная и учитывая влияние изгиба от натяжения ремня, принимаем пониженное значение [к] = 20 МПа.

М1=52.3Н/мм2.–вращающий момент на ведущем валу (валу шестерни), М1 =52.3 Н/мм2.

Принимаем dв1 = 30 мм, согласно стандартного ряда по ГОСТ 6636-69 [1, c.95].

Примем диаметр вала под подшипниками dп1 = 35 мм.

Ведомый вал.

Определим диаметр выходного конца ведомого вала.

Принимаем [к] = 25 МПа.

Вращающий момент на ведомом валу (валу колеса) М2 = 135,286 кН/мм.

Диаметр выходного конца ведомого вала

Выбираем больший диаметр вала из стандартного ряда значений по ГОСТ 6636-69 [1, c.95]., dв2 = 38 мм.

Примем диаметр вала под подшипниками dп2 = 45 мм, под зубчатым колесом dк2 = 50 мм. Диаметры остальных участков валов назначаются, исходя из конструктивных соображений при компоновке редуктора.

Таблица 3.

Условное обозначение

подшипника

dп

Dп

Вп

C

C0

Размеры, мм

Грузоподъемность, кН

207

35

72

17

19,7

13,6

209

45

85

19

25,5

17,8

2.4 ОПРЕДЕЛЕНИЕ КОНСТРУКТИВНЫХ РАЗМЕРОВ ЗУБЧАТОЙ ПАРЫ, КРЫШКИ И КОРПУСА РЕДУКТОРА

Способ получения заготовок зубчатых колес: ковка, объемная штамповка [1, c.230]. Материал – сталь 45 с термообработкой улучшением. Размеры зубчатых колес определяем по формулам, приведенным в таблице 8.1 [1, c.148]:

Сравнительно небольшие размеры шестерни позволяют выполнить шестерню заодно с валом.

Шестерня.

Число зубьев шестерни z1 = 19.

Длина зуба b = 34 мм.

делительный диаметр шестерни dе1 = 43.33 мм.

Средний делительный диаметр шестерни d1 = 61,11 мм.

Внешний диаметр шестерни dae1 = 47.33 мм.

Колесо.

Коническое зубчатое колесо кованое.

Число зубьев z2 = 95

Посадочный диаметр вала под колесом dк2 = 45 мм.

Внешний делительный диаметр колеса de2 = 220.67 мм.

Средний делительный диаметр колеса d2 = 216,67 мм.

Диаметр ступицы dст  1,6 dK2 = 1,6 . 50 = 80 мм.

Длина ступицы: lст = (1,21,5) . dK2 = (1,21,5) . 50 = 6090 мм. Окончательно принимаем lст = 60 мм.

Толщина обода 0 = (2.54)  mn = (2.54) . 2 = 58 мм. Принимаем окончательно 0 =6 мм.

Толщина диска С2 = 0,3 b2 = 0.3 52 = 15,6 мм. Окончательно принимаем значение С2 = 16 мм.

Корпусные размеры.

Материал корпуса и крышки редуктора - СЧ-15. Способ изготовления корпусных деталей – точное литье [1, c.238]. Определим конструктивные размеры корпусных и крепежных деталей редуктора по формулам, приведенным в таблицах 8.3 [1, c.157]:

Толщина стенок корпуса редуктора δ = 0,025a +1 = 0,025 . 130+ 1 = 4,25 мм.

Принимаем δ = 8 мм.

Толщина крышки редуктора δ1 = 0,02a +1 = 0,02 . 130 + 1 = 3,6 мм.

Для обеспечения жесткости и прочности конструкции принимаем окончательное значение δ1 = 8 мм.

Толщина верхнего фланца корпуса b = 1,5δ =1.58= 12 мм.

Толщина нижнего фланца крышки b1 = 1,5δ1 =1,5= 12 мм.

Толщина нижнего пояса корпуса без бобышки [7, c.240], [1, c.445-446]:

p = 2,35 δ = 2,35 . 8 = 18,8 мм.

Принимаем значение p = 20 мм.

Диаметр фундаментных болтов

d1 = (0,030.036)a + 12 =(0,030.036)130 + 12 =15.916.68 мм. Принимаем фундаментные болты с резьбой М16.

Диаметр болтов, крепящих крышку подшипникового узла к корпусу: d2 = (0,7  0,75) d1 =(0,7  0,75) 16= 11.2  12 мм. Принимаем болты с резьбой М12.

Диаметр болтов, соединяющих крышку с корпусом: d3 = (0,5  0,6) d1 =(0,5  0,6) 16= 8  9.6 мм.

Принимаем болты с резьбой М8.

2.5 ПРОВЕРКА ДОЛГОВЕЧНОСТИ ПОДШИПНИКА

Предварительно выбираем конические однорядные роликовые подшипники легкой серии для ведущего 207 и ведомого 209 валов.

Определим реакции в подшипниках на ведущем валу.

Из предыдущих расчетов имеем Р=2414Н, Pr=872Н; из первого этапа компоновки l1=55мм, l2=55мм.

Нагрузка на валу от муфты

Вертикальной плоскости

определим опорные реакции, Н





Проверка:

строем эпюру изгибающих моментов относительно оси Y

Горизонтальная плоскость

определим опорные реакции, Н

Проверка:

б) строем эпюру изгибающих моментов относительно оси X

Суммарные реакции

Подберем подшипники по более нагруженной опоре 1

Намечаем радиальные шарикоподшипники 207 легкой серии(1, таб. П3) d=35мм; D=72мм; В=17мм; C=19,7кН;C0=13,6кН.

Эквивалентная нагрузка

(7,5 [1,ст.117])

где X=1, V=1-т.к вращается внутреннее кольцо подшипника;

Кб=1-коэффициент безопасности для приводов ленточных конвейеров (1, таб.7.2); КТ- температурный коэффициент (1, таб.7.2).

Расчетная долговечность

(7.3 [1,ст.117])

Расчетная долговечность

(7.4 [1,ст.117])

Определим реакции в подшипниках на ведущем валу

Из предыдущих расчетов имеем Р=2414Н, Pr=872Н; из первого этапа компоновки l1=55мм, l2=55мм. Нагрузка на валу от муфты Горизонтальная плоскость

определим опорные реакции, Н

Проверка:

строем эпюру изгибающих моментов относительно оси Y

Вертикальной плоскости

определим опорные реакции, Н

Проверка

строем эпюру изгибающих моментов относительно оси X

Суммарные реакции



Подберем подшипники по более нагруженной опоре 1 Намечаем радиальные шарикоподшипники 209 средней серии d=45мм; D=85мм; B=19мм; C=26,2кН; С0=17,8кН. Эквивалентная нагрузка

(7,5 [1,ст.117])

где V=1-т.к вращается внутреннее кольцо подшипника; Кб=1-коэффициент безопасности для приводов ленточных конвейеров таб.9.19 (1.с.125); КТ- температурный коэффициент таб.9.20 (1.с.126).

Расчетная долговечность/1, формула 9.1/

Расчетная долговечность

Для зубчатых редукторов ресурс работы подшипников может превышать от36 тыс.ч. до 10 тыс.ч. подшипник ведомого вала 207 , а подшипник ведомого 209

2.6 Подбор и расчет шпонок

Для соединения валов деталями передающими вращение применяют главным образом призматические шпонки стали 45 стали 6. Принимаем при проектировании шпонки призматические со скругленными торцами. Размеры сечений шпонок, пазов и длины шпонок берем по СТЭВ 189-75

определяем напряжение смятия и условие прочности:

(6.22 [1, с.102])

где: М – вращающий момент на валу, Н·мм;

d – диаметр вала в месте установки шпонки, мм;

h – высота шпонки, мм;

l – длина шпонки, мм;

b – ширина шпонки, мм;

t1 – глубина паза вала, мм;

[см] – допускаемое напряжение смятия, при стальной ступице (100200) Н/мм2, при чугунной ступице (5070) Н/мм2.

Ведущий вал:

Диаметр вала dв1 = 38 мм, М1 = 52,3 Н.мм,

Шестерню выполняем за одно целое с валом

Рассчитываем шпонку под полумуфту

По таблице 6.9 [1. c.103] выбираем сечение и длину шпонки b x h x l = 10х8х50 мм, глубина паза t1 = 5 мм. При длине ступицы полумуфты МУВП 58 мм.

Условие прочности выполняется.

Ведомый вал:

Рассчитываем шпонку под полумуфту

Диаметр вала dв2 = 45 мм, М2 = 201,8 Н.мм,

По таблице 6.9 [1. c.103] выбираем сечение и длину шпонки b x h x l = 10х8х74 мм, глубина паза t1 = 5 мм, t2 =3.3 мм. При длине ступицы полумуфты МУВП 82 мм.

Условие прочности выполняется.

Шпонки под зубчатое колесо

Диаметр вала dК2 = 50 мм, М2 = 201,8 Н.мм,

По таблице 6.9 [1. c.103] выбираем сечение и длину шпонки b x h x l = 14х9х50 мм, глубина паза t1 = 5,5 мм, глубина паза на колесе t2 = 3,8 мм. При длине ступицы полумуфты МУВП 60 мм.

Условие прочности выполняется.

2.7 УТОЧНЁННЫЙ РАСЧЁТ ВАЛОВ

Уточнённый расчёт состоит в определении коэффициентов запаса прочности S для опасных сечений и в сравнении их с допускаемым значением Прочность соблюдена при n > .

Ведущий вал.

По сколько при конструировании диаметры вала шестерни были увеличены по сравнению с расчитаными для соединения её муфтой с валом электродвигателя, по этому уточненный расчет вала производить нет смысла.

Ведомый вал.

Материал вала сталь 45 термическая обработка – нормализация.

Диаметр заготовки до 70мм среднее значение

Предел выносливости при симметричном цикле изгиба

Предел выносливости при симметричном цикле касательных напряжений

Сечение А-А. Концентрация напряжения обусловлена наличием шпоночной канавки /1, таб.8.5/:, , /1, таб.8.8/; /1, стр.163 и 166/.

Изгибающий момент в горизонтальной плоскости

Изгибающий момент в вертикальной плоскости

Суммарный изгиб моментов в сечении А-А

Момент сопротивления изгибу сечения нетто при d=50мм, b=16, t1=10

Момент сопротивления кручению сечения нетто

Амплитуда и среднее напряжение цикла касательных напряжений

Амплитуда нормальных напряжений изгиба

Коэффициент запаса прочности по нормальным напряжениям

Коэффициент запаса прочности по касательным напряжениям

Результирующий коэффициент запаса прочности для сечения А-А

Сечение К-К. Концентрация напряжения обусловлена посадкой подшипника с гарантированным натягиванием /, , [1, таб.8.8]; [1, стр.163 и 166]

Изгибающий момент

Осевой момент сопротивления при d=45мм.

Полярный момент сопротивления

Амплитуда и среднее напряжение цикла касательных напряжений

Амплитуда нормальных напряжений изгиба

Коэффициент запаса прочности по нормальным напряжениям

Коэффициент запаса прочности по касательным напряжениям

Результирующий коэффициент запаса прочности для сечения К-К

Сечение Л-Л. Это сечение при передачи вращающего момента от ведомого вала через муфту.

Концентрация напряжения обусловлена переходом от ш 45мм к ш38мм /1, таб.8.5/:, , /1, таб.8.8/; /1, стр.163 и 166/.

Внутренние силовые факторы те же, что и для сечения К-К

Осевой момент сопротивления сечения при d=38мм.

Полярный момент сопротивления

Амплитуда и среднее напряжение цикла касательных напряжений

Амплитуда нормальных напряжений изгиба

Коэффициент запаса прочности

Результирующий коэффициент запаса прочности для сечения Л-Л

Сечение Б-Б. Концентрация напряжения обусловлена наличием шпоночной канавки /1, таб.8.5/:, , /1, таб.8.8/; /1, стр.163 и 166/.

Изгибающий момент

Момент сопротивления изгибу сечения нетто при d=38мм, b=10мм, t1=5мм

Момент сопротивления кручению сечения нетто

Амплитуда и среднее напряжение цикла касательных напряжений

Амплитуда нормальных напряжений изгиба

Коэффициент запаса прочности

Коэффициент запаса прочности

Результирующий коэффициент запаса прочности для сечения Б-Б

Результаты поверки сводим в таблицу:

Таблица 4.

Сечение

А-А

К-К

Л-Л

Б-Б

Коэффициент запаса S

9.39

5,05

2.9

3.18

2.8 Подборка и расчет муфт

Муфты выбираем по расчетному моменту и диаметру вала по формуле

(9.1[1,с.170])

где К- коэффициент, учитывающий эксплуатационные условия, его значение определим по таблице (9.3[7,с.172]) К=1.25

Мном – вращающий момент на валу, Н . м

[M]- допустимый момент для муфты, Н . м

Ведущий вал:

М1 =52.3 Н . м d1 =38 мм

Принимаем муфту втулочно-пальцевую (МУВП) по ГОСТ 21424-75 для которой [M]=250 Hм

Выбираем муфту МУВП 250

n=4000 об/мин

lцикл =58 мм-длинна полумуфты

lВТ =28 мм- длинна упругой муфты

Z=6- число пальцев

d0 =28 мм- диаметр упругой втулки

L=121 мм- диаметр муфты Д= 140 мм- диаметр муфты Д0 =105 мм- диаметр расположения пальцев С=(3…5)мм- зазор между полумуфтами dп =14мм- диаметр пальца.

Упругие элементы муфты проверяем по напряжениям смятия в предложении равномерного распределения нагрузки между пальцами по формуле

где []см=2 Н/мм2 , допускаемое напряжение смятия.

Пальцы муфты, изготовлены из стали 45 ГОСТ 2050-74 рассчитывают на изгиб по формуле

где []u – допускаемое напряжение изгиба Н/мм2 определяется по формуле

где m – предел текучести материала пальцев Н/мм2 по таблице 3.3(1,с.28)m =440 Н/мм2 тогда

Условие прочности выполнено.

Ведомый вал:

М2 =52.3 Н . м d2 =38мм

Где [M]=500Hм

n=4000об/мин

lцикл =82мм-длинна полумуфты

dп =14мм- диаметр пальца

lВТ =28мм- длинна упругой муфты

Z=8- число пальцев

d0 =28мм- диаметр упругой втулки

L=169мм- диаметр муфты

Д= 170мм- диаметр муфты

Д0 =130мм

С=(3…5)мм- зазор между полумуфтами

Проверяем упругую муфту по напряжениям смятия

Пальцы муфты, изготовлены из стали 45 ГОСТ 2050-74 рассчитывают на изгиб

Условие прочности выполнено.

2.9 ВЫБОР СОРТА МАСЛА

Смазывание зубчатого зацепления производится погружением зубчатого колеса в масло, заливаемое внутрь корпуса до уровня, обеспечивающего погружение колеса примерно на 10мм. Определим объем масляной ванны, исходя из расчета 0,25 дм3 масла на 1 кВт передаваемой мощности:

Ртр  0,25,

где: Ртр – требуемая мощность электродвигателя .

По таблице 8.8 [1, c.164] определяем вязкость масла в зависимости от контактного напряжения и окружной скорости.

При средней окружной скорости v = 2,19 м/с < 5м/с принимаем кинематическую вязкость масла равной  = 118 cCт.

По таблице 8.10 [1, c.165] выбираем в зависимости от вязкости масло индустриальное И-100А по ГОСТ 20799–75.

Уровень масла контролируется при работе редуктора закрытым жезловым. Подшипники смазываем пластичной смазкой, которую закладывают в подшипниковые камеры при сборке. Периодически смазку пополняют шприцем через пресс-масленки. Сорт смазки УТМ 7.15 [1, c.132].

2.10 СБОРКА РЕДУКТОРА

Перед сборкой внутреннюю полость корпуса редуктора тщательно очищают и покрывают маслостойкой краской.

Сборку производят в соответствии со сборочным чертежом редуктора, начиная с узлов валов:

- на ведущий вал насаживают мазеудерживающие кольца и шарикоподшипники, предварительно нагретые в масле до 80-100° С;

- в ведомый вал закладывают шпонку и напрессовывают зубчатое колесо до упора в бурт вала; затем надевают распорную втулку, мазеудерживающие кольца и устанавливают шарикоподшипники, предварительно нагретые в масле.

Собранные валы укладывают в корпус редуктора и надевают крышку корпуса, покрывая предварительно поверхности стыка крышки и корпуса спиртовым лаком. Для центровки устанавливают крышку на корпус с помощью двух конических штифтов; затягивают болты, крепящие крышку к корпусу. После этого на ведомый вал надевают распорное кольцо; в подшипниковые камеры закладывают пластичную смазку; ставят крышки подшипников . Перед постановкой сквозных крышек в протоки закладывают солидол. Проверяют проворачиванием валов отсутствие заклинивания подшипников (валы должны проворачиваться от руки) и закрепляют крышки винтами. Затем ввёртывают пробку маслоспускного отверстия с прокладкой и жезловый маслоуказатель.

Заливают в корпус масло и закрывают смотровое отверстие крышкой с прокладкой из технического картона; закрепляют крышку болтами.

Собранный редуктор обкатывают и подвергают испытанию на стенде по программе, устанавливаемой техническими условиями.

Литература

1. Чернавский С.А., Боков К.Н., Чернин И.М. и др., Курсовое проектирование деталей машин: Учеб. Пособие для техникумов – М.: Машиностроение, 1979. -351 с.

2. Шейнблит А.Е. Курсовое проектирование деталей машин: Учеб. пособие:– М.: Высшая шк., 1991.-432 с.

3. Куклин Н.Г., Детали машин. Учебник для учащихся машиностроительных техникумов. М.: Высшая школа,1973. -384 с.

4. Дунаев П.Ф., Курсовое проектирование деталей машин: :– М.: Высшая шк., 1984.-255 с.

Похожие работы: