Реферат : Материаловедение полупроводников 


Полнотекстовый поиск по базе:

Главная >> Реферат >> Промышленность, производство


Материаловедение полупроводников




Материаловедение полупроводников

Необходимость получения материалов, обладающих специальными свойствами, выдвигают перед наукой задачу дальнейшего развития физики и химии твердого тела, призванных разрабатывать научные основы создания новых конструкционных материалов с заданными свойствами.

Успех развития полупроводниковой техники и связанных с ней отраслей (электроники, энергетики и др.) в значительной мере определяются достижениями в области разработки и получения полупроводниковых сплавов с определенными стабильными электрофизическими, механическими и другими свойствами. Поэтому разработка вопросов, связанных с получением полупроводниковых материалов, обладающих определенным комплексом свойств, т. е. тех вопросов, круг и задачи которых составляет предмет материаловедения полупроводников, являются одной из важнейших задач науки и техники.

Только после того, как Ge и Si удалось значительно очистить от сопутствующих примесей и получить в виде монокристаллов, были обнаружены их новые свойства, которые определили основное направление работ по полупроводниковым материалам [1].

В качестве примера влияния степени чистоты материала на его свойства можно привести данные [2]. Температура и плавление Al по мере увеличения степени его чистоты изменяется следующим образом: при 99,2 и 99,5% Al температура плавления ( Тпл ) равна соответственно 930 и 931 К. При содержании основного вещества 99,6% Тпл = 931,7 К, а для 99,97%-ного Al температура плавления равна 932,8 К. В случае Al, содержащего 99,996% основного вещества Тпл = 933,24 К.

Так же сильно зависит от степени чистоты Al и его плотность ( d ): при 99,25% Al d = 2,727; 99,40% Al - d = 2,706; 99,75% Al - d = 2,703; 99,971% Al - d = 2,6996; 99,996% Al - d = 2,6989 г/см3.

Подобным образом зависит температура рекристаллизации предварительного деформированного Al от степени его чистоты: 99,99% Al - Трекр = 373 К; 99,999% Al - Трекр = комнатной температуре; алюминий чистотой 99,9992% и деформированный при температуре жидкого азота, рекристаллизуется при Т = 223 К. К тому же, с повышением чистоты Al увеличивается его электропроводность, отражательная способность, пластичность и коррозионная стойкость.

Отличительной чертой полупроводников является их очень сильная чувствительность к незначительным внешним воздействиям - температуре, электрическому и магнитному полям, гидростатическому давлению, свету и т. д. [3].

Типичными представителями полупроводников являются германий и кремний. Тем не менее сами по себе эти материалы с собственным сопротивлением не могут быть использованы в технике для создания полупроводниковых приборов [1]. В этом случае предварительно очищенный материал легируют различными электроактивными примесями, сообщающими полупроводнику тот или иной тип проводимости и определенные электрические характеристики. В связи с этим возникла проблема изучения растворимости различных элементов в полупроводниках (Ge, Si, соединения АIIIBV, AIIBVI, AIVBVI и т.д.) и детального построения диаграмм состояния типа полупроводник-легирующий элемент.

При создании полупроводниковых сплавов в некоторых случаях в основной материал вводят несколько легирующих элементов. В таких случаях наличие легирующего элемента одного типа может оказать существенное влияние на поведение элемента другого типа в связи с возможностью химического взаимодействия между ними [4, 5]. В этой связи потребовалось установить закономерности поведения легирующих компонентов при получении сложнолегированных полупроводниковых сплавов.

В разработке общей проблемы легирования полупроводников и получения полупроводниковых сплавов на их основе выделяют три основных направления [1]:

исследование растворимости легирующих элементов и построение соответствующих диаграмм состояния как двойных, так и тройных систем;

изучение взаимодействия между легирующими компонентами как в твердых, так и в жидких растворах на основе полупроводников;

разработка рациональных методов легирования и термообработки с целью получения сплавов, обладающих необходимым комплексом электрофизических и физико-химических свойств.

Высокая химическая активность и диссоциация ряда полупроводниковых соединений, усложнение их состава (многокомпонентные полупроводники, например, GaxIn1-xP, GaPyAs1-y и т.д.), наличие легирующих примесей , изменение типа химической связи и структуры ближнего порядка при плавлении ставят новые вопросы перед физико-химическим анализом. Наличие двух- и трехкомпонентных полупроводниковых соединений привело к необходимости анализа в рамках трех-, четырехкомпонентных систем так называемых квазибинарных, квазитройных и т.д. систем, что, учитывая наличие определенной степени диссоциации, делает проблематичным само введения таких понятий [6]. Данное положение находит свое проявление и в наблюдаемом для ряда полупроводниковых систем несоответствии между квазибинарным характером диаграмм состояния систем и диаграммами состав-свойство. Кроме того, значительные элементы в проблему гетерогенных равновесий вносит и наличие областей гомогенности на основе полупроводниковых соединений. Термодинамический подход к описанию и анализу гетерогенных равновесий дает возможность не только оценить положение линий (поверхностей) фазавого равновесия в системе или значение термодинамических характеристик процессов плавления (кристаллизации) и смешение (растворение), но и дает возможность выявить природу поведения химических компонентов и характер их взаимодействия в полупроводниковых системах.

Развитие полупроводниковой опто- и микроэлектроники привело к широкому использованию полупроводниковых соединений. Взаимодействие различных соединений друг с другом приводит к образованию твердых растворов, что дает возможность путем изменения состава раствора получать материалы с наперед заданными свойствами.

Расчеты процессов кристаллизации легированных монокристаллов полупроводников основываются на знании элемента между твердой и жидкой фазами, который непосредственно вытекает из диаграммы состояния полупроводник-легирующий элемент [1, 7, 8]. При этом нужно исходить из того, что коэффициент распределения является таким параметром, анализ которого позволит установить физико-химическую природу взаимодействия между компонентами [8, 9].

Довольно сложно решается задача воспроизводимого легирования полупроводниковых соединений с целью получения кристаллов с необходимыми свойствами. Это связано с тем, что сами задаваемые свойства варьируются в очень широких пределах и при этом, как правило, необходимо выращивать такие кристаллы с определенным сочетанием различных свойств (например, оптических и электрофизических) с учетом высокой однородности распределения последних в объеме. Более того, многие примеси в полупроводниковых соединениях обнаруживают довольно сложное поведение, а, следовательно, правильный выбор оптимальной легирующей добавки зависит в этом случае от результатов предварительных исследований влияние примесей на электрофизические и оптические свойства таких кристаллов [10].

Изменение химического состава по-разному влияет на свойства в зависимости от того, какими изменениями в фазовом составе оно сопровождается. Следовательно, важно не только знать какие фазы образуются при взаимодействии элементов, но и уметь прогнозировать фазовый состав и пути воздействия на него. При внешнем воздействии можно получить фазовые состояния с различной степенью отклонения от равновесного, что дает дополнительные возможности для управления свойствами [11].

Точечные дефекты, дислокации, дефекты упаковки и другие нарушения структуры, управляют процессами диффузии, а также влияют на электрические, тепловые и другие свойства кристаллов. Без достаточно глубокого понимания дефектов кристаллической структуры и знания процессов их влияния на свойства полупроводниковых материалов невозможно использование полезных свойств таких кристаллов и тем более получение кристаллов с наперед заданными свойствами [12]. К настоящему времени в изучении дефектов накоплен большой материал, причем их изучение позволило не только выявить целый ряд новых, ранее не известных явлений, но и выработать рекомендации по управлению свойствами полупроводниковых материалов.

Подводя итоги сказанному выше можно заключить, что материаловедение полупроводников - это научная дисциплина, изучающая закономерности образования металлических и полупроводниковых фаз (элементарных веществ, растворов, соединений, сплавов), в равновесных и неравновесных условиях, влияние химического и фазового состава, атомной структуры и структурных дефектов фаз на свойства материалов, а также разрабатывающая научные и практические пути воздействия на их фазовый состав, структуру и физико-химические свойства.

Список литературы

Глазов В. М., Земсков В. С. Физико-химические основы легирования полупроводников. -М.: Наука, 1967. -С. 371.

Беляев А. И. Физико-химические основы очистки металлов и полупроводниковых материалов. -М.: Металлургия, 1973. -С.224.

Фистуль В. И. Физика и химия твердого тела. Т. 2. -М.: Металлургия, 1995. -С. 320.

Милнс А. Примеси с глубокими уровнями в полупроводниках. -М.: Мир, 1977. -С. 562.

Самсонов Г. В., Бондарев В. Н. Германиды. -М.: Металлургия, 1968. -С. 220.

Уфимцев В. Б., Лобанов А. А. Гетерогенные равновесия в технологии полупроводниковых материалов. -М.: Металлургия, 1981. -С. 216.

Пфанн В. Зонная плавка. -М.: Мир, 1970. -С. 366.

Нисельсон Л. А., Ярошевский А. Г. Межфазовые коэффициенты распределения. Равновесия кристалл-жидкость и кристалл-пар. -М.: Наука, 1992. -С. 390.

Вигдорович В. Н., Вольпян А. Е., Курдюмов Г. М. Направленная кристаллизация и физико-химический анализ. -М.: Химия, 1976. -С. 198.

Мильвидский М. Г., Пелевин О. В., Сахаров Б. А. Физико-химические основы получения разлагающихся полупроводниковых соединений. -М.: Металлургия, 1974. -С. 392.

Горелик С. С., Дашевский М. Я. Материаловедение полупроводников и металловедение. -М.: Металлургия, 1973. -С. 496.

Левицкий Ю. Т. Макроскопические дефекты кристаллической структуры и свойства материалов. -М.: Наука, 1988. -С. 200.

Для подготовки данной работы были использованы материалы с сайта http://kristall.lan.krasu.ru/

Похожие работы:

  • Алмазоподобные полупроводники

    Реферат >> Остальные работы
    ... -Бруевич В.Л., Калашников С. Г. Физика полупроводников.- М.: Наука,1977. 5. Горелик С.С., Дашевский М. Я. Материаловедение полупроводников и металловедение.- М. Металлургия, 1973 ...
  • Материаловедение

    Реферат >> Остальные работы
    ... проходить электроны и «дырки», полупроводник повышает электропроводность – через пластинку ... n-переход будет открыт. В реальных полупроводниках по сравнению с этой теоретической картиной ... в зависимости от свойств полупроводника. Перечислите основные параметры ...
  • Легирование полупроводниковых материалов

    Реферат >> Промышленность, производство
    ... искажена. Список литературы Горелик С.С., Дашевский М.Я. Материаловедение полупроводников и металловедение. – М., 2008. Медведев С.А. Введение в ... школа, 2007. Остробородова В.В. Основы технологии и материаловедения полупроводников. – M.: Изд. Моск. ун-та, ...
  • Основы материаловедения

    Контрольная работа >> Промышленность, производство
    ... обусловлена ионизацией атомов примеси в полупроводнике. В полупроводниках IV группы таблицы Менделеева (Ge ... металлов. – М.: Металлургия, 1983. Арзамасов Б.Н., Сидорин И.И. Материаловедение. – М.: Машиностроение, 1986. Бернштейн М.Л., Займовский В.А. ...
  • Основы материаловедения

    Контрольная работа >> Промышленность, производство
    ... филиал КОНТРОЛЬНАЯ РАБОТА № 1 По теме «Материаловедение» Деркач Николай Николаевич шифр Д—2170 ... ряд интерметаллических соединений. Некоторые полуметаллы и полупроводники в жидком состоянии превращаются в типичные металлы ...
  • Конспект лекций по материаловедению

    Реферат >> Физика
    ... атомном давлении делят на проводники, полупроводники и диэлектрики.  [Ом*м] – удельное электрическое сопротивление ... его использования может являться и проводником и полупроводником и диэлектриком. Например, металлы, являющиеся в твердом ...
  • История развития криоэлектроники

    Реферат >> Радиоэлектроника
    ... щелью (запрещенной зоной) в полупроводнике и щелью в сверхпроводнике. В полупроводнике минимумы энергии Е(р) определяются ... консолидация научных сил, занимающихся низкотемпературным материаловедением, низкотемпературной электроникой твердого тела ...
  • Исследование твердых электролитов

    Дипломная работа >> Химия
    ... в сравнении с жидкими электролитами, полупроводниками, металлами и диэлектриками. 1.1 Основные положения теории ... и неорганической химии, материаловедения и энергетики. Существование суперионной проводимости во многом зависит от структурных ...
  • Полупроводниковые материалы в металлургии

    Реферат >> Металлургия
    ... электронный маркируют КМЭ-2. 3.Применение полупроводников 3.1.Тепловые сопротивления (термисторы) Изменение ... имеет место при использовании полупроводников. У некоторых полупроводников повышение температуры на ... ,194с. 2.Сидорин и др. - Основы материаловедения
  • Кристаллы в природе

    Реферат >> Физика
    ... , сформировавшихся на наших глазах, - космическое материаловедение: получение новых веществ и материалов и улучшение ... , поэтому их называют акцепторами, а полупроводники с такими примесями – полупроводниками р-типа. 5.8. Контактные явления Если ...