Статья : Построение 3D-моделей циклических молекул в естественных переменных 


Полнотекстовый поиск по базе:

Главная >> Статья >> Биология и химия


Построение 3D-моделей циклических молекул в естественных переменных




Построение 3D-моделей циклических молекул в естественных переменных

Е.Г. Атавин, Омский государственный университет, кафедра органической химии

1. Введение

Интерес к геометрическому строению циклических молекул, интенсивно изучаемых как экспериментальными, так и расчетными методами, определяется не только их важнейшей ролью в органической химии и биохимии, но также сложностью и практически неисчерпаемым количеством соответствующих конформационных вариантов, особенно в случае гетероциклических соединений. Для построения модели (т.е. вычисления 3N декартовых координат) N-атомной молекулы в общем случае достаточно задать 3N-6 значений структурных параметров - межъядерных расстояний, валентных углов и углов внутреннего вращения, называющихся также внутренними или естественными переменными и легко оценивающихся по имеющимся эмпирическим закономерностям [1]. Оставшиеся 6 степеней свободы связаны с выбором положения и ориентацией молекулы в пространстве. Тем не менее, число структурных параметров, описывающих строение N-атомных моноциклических молекул, равно 3N (N межъядерных расстояний, N валентных углов и N углов внутреннего вращения). Из этих параметров лишь 3N-6 являются независимыми, и их значения можно выбирать произвольно (в пределах условия замыкания цикла). Оставшиеся 6 параметров называются зависимыми и определяются значениями независимых параметров.

Отметим, что пространственное строение нециклических молекул полностью описывается заданием значений N-1 межъядерных расстояний, N-2 валентных углов и N-3 углов внутреннего вращения. Замыкание цепи атомов в цикл увеличивает на единицу количество независимых межъядерных расстояний. При этом количество независимых угловых переменных уменьшается и становится недостаточным для непосредственного использования ранее рассмотренных алгоритмов построения нециклических молекул [2].

Алгоритмы построения циклических молекул по естественным переменным можно разделить на две группы.

Для итерационных методов (методы "стягивающего потенциала" и Шераги) характерна слабая чувствительность к качеству стартового приближения значений структурных параметров. Однако низкое быстродействие делает их малоэффективными при решении задач, требующих многократного построения модели молекулы (решение обратной задачи при поиске структурных параметров в дифракционных методах исследования, уточнение геометрии в методах молекулярной механики и квантовой химии, конформационный поиск и т.д.).

Алгоритмы построения геометрической модели молекулы неитерационными методами (метод Нордландера) опираются на вспомогательные геометрические построения, отличаются способом выбора 3N-6 назависимых параметров из общего их количества, работают значительно быстрее методов первой группы, однако требуют аккуратного выбора значений независимых геометрических параметров, не противоречащих условию замыкания цикла.

При сравнении алгоритмов полезно иметь в виду, что точность задания структурных параметров на основании эмпирических закономерностей существенно падает в ряду "межъядерные расстояния", "валентные углы", "торсионные углы", и включение в число зависимых параметров максимального количества торсионных углов является предпочтительным.

2. Метод "стягивающего потенциала" [3]

Очевидно, что линейная цепь атомов может быть неотличима от циклической, если подобрать соответствующие значения геометрических параметров. Подбор осуществляется итерационно, так, чтобы расстояние между концами линейной цепочки атомов постепенно приближалось к длине соответствующей химической связи. Для этого к обычному минимизируемому функционалу прибавляется так называемый "стягивающий потенциал", исчезающи по мере приближения расстояния между концами цепи к эталонному значению.

3. Метод Шераги

Авторам [4] удалось включить в набор независимых структурных параметров все N межъядерных расстояний и N валентных углов. Теперь лишь N-6 углов внутреннего вращения требуется задавать во входных данных. Оставшиеся шесть зависимых торсионных углов должны удовлетворять системе из шести уравнений, формулирующих условия замыкания цикла, сводящейся к уравнению с весьма громоздкими коэффициентами, решаемому итерационно.

4. Метод Нордландера [5]

Строится линейная цепь из N-1 атома. Если расстояние между концами этой цепи не превышают суммы длин двух оставшихся связей, то замыкание легко обеспечивается достраиванием последнего атома между этими концами. Метод формально неитерационный, но обеспечить отмеченное требование к стартовому набору структурных параметров практически невозможно без итерационного подбора.

Набор независимых параметров содержит N межъядерных расстояний, N-2 валентных угла и N-4 угла внутреннего вращения.

5. Метод построения пространственных моделей циклических молекул

Недостатки предыдущего метода в конечном итоге вытекают из неудачного выбора замыкающего (одноатомного) фрагмента, предопределяющего жесткие требования к расстоянию между концами основной цепи. В предлагаемом методе роль замыкающего фрагмента играет цепочка, равная примерно половине длины строящегося цикла. Значительно больший диапазон возможных значений расстояний между ее концами, с учетом сопоставимости длин обеих цепочек, обеспечивает построение цикла практически при любых разумных вариациях стартового набора структурных параметров с помощью следующей схемы:

1. Разбиваем цикл на две примерно одинаковые по длине цепи (основную и рабочую), состоящие из M и L атомов соответственно (M + L = N + 2). Строим обе цепочки с помощью одного из алгоритмов построения нециклических молекул [2], обеспечивая их ориентацию относительно оси OX в соответствии с рис. 1а. б.

2. Вычисляем расстояния (R1 и R2) между концами цепей.

3. Поворотом правой ветви рабочей цепи вокруг оси OX на угол добиваемся, чтобы расстояния между концами цепей совпали. Это возможно при двух значениях угла (1 и 2):

1 = Arcsin(C/) - Arcsin(B/),

2 = - Arcsin(C/) - Arcsin(B/),

где = Sign(A) * sqrt(A2 + B2)

A = y1 * zm - z1 * ym

B = y1 * ym + z1 * zm

C = (R22 - R21) / 2 + B.

Рис. 1. Ориентация основной (а) и рабочей (б) цепей.

Знак параметра A совпадает со знаком вспомогательного торсионного угла F1,J,J+1,M . В случае, если в исходной цепи четыре атома 1,J,J+1,M попадают в плоскость (то есть F = 0,p), параметр A обращается в ноль. При этом y1 = -y2. Однако при смене знака параметра A решения скачком меняются местами. При этом малые изменения структурных параметров приведут к большим изменениям геометрии молекулы, в частности, возможен самопроизвольный переход от одного оптического размера к другому. Анализ показывает, что избежать зависимости результата от выбора стартового приближения и обеспечить непрерывное изменение геометрии можно, если выбирать окончательное решение следующим образом:

f =

{

y1, если sgn1 * Sign(A) > 0

y2, если sgn1 * Sign(A) < 0

Параметр sgn1 введен для управлением выбором нужного решения. Значение sgn1 = 1 приводит к конформации цикла, наиболее близкой к стартовой в том смысле, что вспомогательный торсионный угол F при построении цикла не будет менять знак. Значение sgn1 = -1 изменит знак F и приведет к конформеру, отвечающему тому же набору независимых параметров, но с другими значениями зависимых параметров.

В случае abs(C/r) > 1 построение цикла с заданным набором параметров невозможно, поскольку значение R1 не попадает в интервал [Rmin , Rmax] изменения расстояния R2. Для корректировки вводимых значений структурных параметров полезно иметь в виду, что если C < 0, то R1 > Rmax, а если C > 0, то R1 < Rmin.

4. Цепочки соединяются концами (рис. 2).

Рис. 2. Замыкание цикла.

5. Цикл перегибается по линии соединения до придания независимому валентному углу a 21N заданного значения. Соответствующий угол f 21MN может быть вычислен по формулам пункта (3), если в качестве параметров R1 и R2 взять легко вычисляемое конечное и исходное значения межъядерного расстояния R2,N. При этом также возникает два варианта решения, для выбора из которых необходимо ввести второй знаковый параметр sgn2. Если заданный угол a несовместим с условием замыкания цикла (при этом abs(C/r) > 1), то его следует увеличить, если C > 0, или уменьшить, если C < 0.

Пошаговый перебор значений независимых торсионных углов для всех четырех комбинаций знаковых параметров sgn1 и sgn2 позволит получить полный набор конформеров исследуемой циклической системы.

Отметим также, что, в отличие от предыдущего метода, содержащего два зависимых валентных угла, предлагаемый алгоритм использует лишь один зависимый валентный угол M-1,M,M+1. Следовательно, в наборе независимых параметров содержится на один труднооцениваемый торсионный угол меньше. Это уменьшает на единицу размерность пространства перебора структур и значительно ускоряет конформационный поиск.

Предлагаемый алгоритм формально применим к карбо- и гетероциклам, начиная с пятичленного, однако его достоинства (быстродействие и работоспособность в относительно широком диапазоне заданных значений независимых параметров) в наибольшей степени проявляются для макроциклических систем.

Список литературы

Mastryukov V.S., Simonsen S.H. Empirical correlations in structural chemistry // Molecular Structure Research 1996. V.2. P.163-189.

Атавин Е.Г., Тихоненко В.О. Построение 3D-моделей нециклических молекул в естественных переменных // Вестник Омского университета. 1998. №2. С.35-37.

Дашевский В.Г. Конформационный анализ органических молекул. М.: Химия, 1982.

Go N., Scheraga H.A. Ring closure and local conformational deformation of chain molecules. Macromolecules. Vol.3. N2. P.178-187. 1969.

Nordlander J.E., Bond A.F., Bader M. Atcoor: a program for calculation and utilization of molecular atomic coordinates from bond parameters // Computers & Chemistry. 1985. V.3. P.209-235.

Для подготовки данной работы были использованы материалы с сайта http://www.omsu.omskreg.ru/

Похожие работы:

  • Химия, элементы таблицы Менделеева

    Реферат >> Химия
    ... атомов. Построение простейшей модели атома ... она превышает прочность и естественных (хлопок, шерсть), ... полупроводниковой технике (изготовление выпрямителей переменного тока и т. д.). ... -видимому, синтезированы циклические молекулы элементарной серы различной ...
  • Ответы к экзаменационным билетам по Информатике. 2001-2002 год

    Реферат >> Информатика, программирование
    ... молекул ДНК (дезоксирибонукле-иновой кислоты). Молекулы ... способы организации данных (переменные и массивы) Переменные. В алгоритмических ... ли­нейную, разветвляющуюся и циклическую. В процессе создания ... естест­венном языке. Путем построения логических моделей ...
  • Нейрокомпьютерные системы

    Реферат >> Информатика, программирование
    ... система человека, построенная из элемен­тов, ... грубой модели мозга, кажется естественным ожидать ... выработке большого количества молекул циклического аденозинтрифосфата, тем самым ... множества сетевых переменных. Искусственная переменная температуры инициируется ...
  • Антология культурологии

    Реферат >> Культурология
    ... по естественным законам. ... принципы построения антропологического знания ... Тойнби, разработал своеобразную модель циклического развития культуры, ... составляющих ее молекул; биологический организм ... переменная, социальная система — как зависимая переменная ...
  • Концепции современного естествознания

    Реферат >> Естествознание
    ... абстрагированием или построением модели явления. В ... естественного отбора. Благодаря предбиологическому отбору самих систем, а не только отдельных молекул ... земному. С циклическими изменениями Солнечной ... очень переменное коротковолновое ультрафиолетовое ...
  • Билеты по физике

    Реферат >> Физика
    ... чем ближе построенная модель действительному корпускулярного ... носителем тока. Естественно, что электроны ... называемых молекулами; молекула – ... (Гц, Т=1/v, Гц=1/с). Циклическая частота - … за 2П ... термодинамики. 2. Генератор переменного тока. Трансформатор. ...
  • Волновой генетический код

    Дипломная работа >> Математика
    ... то неопределенности в построении молекулы белка ... оно ... Мы разработали модель фрактального представления естественных (человеческих ... генерация переменных электрических волн ... Граничные условия - “квази-циклические”: (поли-A-последовательность). Параметр ...
  • Основы проектирования и конструирования

    Учебное пособие >> Промышленность, производство
    ... Естественный способ. Естественным ... молекулы ... при циклических и ... модели; модели, переменные во времени - динамические модели; модели, неизменные в пространстве - модели с сосредоточенными параметрами; модели, изменяющиеся в пространстве - модели ... построение модели ...
  • Лекции по гидравлике

    Реферат >> Физика
    ... энергия молекул возрастает и, естественно, уменьшается ... времени и координат. Переменные а, Ь, с, и / носят название переменных Лагранжа. Задача сводится ... в условиях циклической нагрузки специальных ... известными ме­тодами построения моделей как физическим, ...
  • Билеты и ответы по Информатике за 11-й класс

    Реферат >> Информатика, программирование
    ... Естественные и формальные языки. Технология алгоритмического программирования. Основные типы и способы организации данных (переменные ... Технологическая цепочка: построение модели – формализация ... Циклические ... молекул и т.д. Динамически информационные модели ...