Реферат : Радиационный режим в атмосфере 


Полнотекстовый поиск по базе:

Главная >> Реферат >> Наука и техника


Радиационный режим в атмосфере




7


Излучение в атмосфере

Реферат

Радиационный режим в атмосфере

Составлен:

Карбышевым С.Ф.

Введение

Большинство происходящих в атмосфере явлений, изучаемых оптиками и метеорологами, развиваются за счет лучистой энергии, т.е. энергии, доставляемой Земле солнечной радиацией. Мощность этой энергии примерно может быть оценена в 18*1023 эрг/с. Энергетический спектр солнечной радиации на границе атмосферы близок к спектру абсолютно черного тела с температурой порядка 60000К (рис.1.[1]).

До того, как солнечное излучение достигнет поверхности, оно проделает длинный путь через

земную атмосферу, где будет не только рассеяно и ослаблено, но и изменено по спектральному

Рис.1. Распределение энергии в спектре солнечной радиации на границе атмосферы: 1- по данным 1903-1910 гг., 2 - 1920-1922 гг., 3 - 1917 г., 4 - абсолютно черное тело при температуре 57130К.

составу. В результате дошедшая до места наблюдения (земной поверхности) в виде параллельных лучей от Солнца так называемая прямая солнечная радиация будет как количественно, так и качественно отлична от солнечной радиации за пределами атмосферы [1].

Солнечная (коротковолновая) радиация преобразуется, проходя через атмосферу, в следующие виды радиации: рассеянную (ввиду наличия в атмосфере различных ионов и молекул газов, частиц пыли происходит рассеяние прямой солнечной энергии во все стороны; часть рассеянной энергии доходит до поверхности Земли), отраженную (часть попавшей в атмосферу и на земную поверхность энергии отражается обратно), поглощенную (происходит диссоциация и ионизация молекул верхних слоях атмосферы, нагрев воздуха и самой земной поверхности, тех предметов, которые на ней находятся).

Спектр Солнца

Как видно из рис.1., энергетический спектр излучения близок к спектру абсолютно черного тела при температуре T~60000К, но не совпадает с ним, т.к. яркость солнечного диска планомерно уменьшается от его центра к краям. Наилучшей формой представления распределения энергии в солнечном спектре является формула В.Г. Кастрова:

l0,l*Dl=0,021*l-23*exp(-0,0327*l-4)*Dl[1] (1).

Формулы, описывающей распределение энергии Солнца на поверхности Земли пока не существует, т.к. в нее должно входить слишком много флуктуирующих параметров (плотность и высотное распределение газов, альбедо отражающих поверхностей, температура и т.п.).

Ослабление потоков лучистой энергии в атмосфере

Солнечное излучение, проходя через атмосферу, ослабляется благодаря эффектам рассеяния и поглощения. Для потоков лучистой энергии атмосфера в видимой части спектра является мутной средой, т.е. рассеивающей, а в ультрафиолетовой и инфракрасной - поглощающей и рассеивающей. Световой поток поглощается в атмосфере, причем количество энергии, дошедшей до поверхности Земли, можно найти из закона Бугера (закон ослабления света):

I=I0*exp(-)[3] (2),

где I0 - интенсивность падающего излучения (на границе атмосферы), Z0£750 (плоско-параллельная модель атмосферы), H - путь, пройденный светом до земной поверхности, k(h)- коэффициент поглощения (ослабления) светового потока, зависящий от высотного распределения плотности, состава атмосферы, физических и химических свойств газов, частиц, находящихся в атмосфере (рис.2.[1]).

Рассмотрим избирательное поглощение лучистой энергии в атмосфере. Любое вещество имеет свои полосы поглощения (рис.3.[1]). Из газов, входящих всегда в состав атмосферы, существенным для нас селективным поглощением обладают лишь O2, O3, CO2 и водяной пар H2O. Кислород вызывает интенсивное поглощение света

В далекой ультрафиолетовой области для длин волн l<200 нм, с максимумом поглощения около l=155нм. Поглощение в этой области спектра настолько велико уже в самых высоких слоях

Рис.2. Распределение энергии в нормальном солнечном спектре.

Рис.3. Спектр поглощения земной атмосферы.

атмосферы, что солнечные лучи с длиной волны l<200нм не доходят до высот, доступных для наблюдения с поверхности Земли и самолетов. Кислород также дает систему полос в видимой области спектра: A (759,4- 70,3 нм; lmax=759,6 нм); B (686,8 - 694,6 нм; lmax=686,9 нм). Углекислый газ (CO2) - основная узкая полоса с lmax=4,3 мкм, остальные - слишком незначительны, поэтому не имеют для нас существенного значения. Озон (O3) имеет весьма сложный спектр поглощения, линии и полосы которого охватывают всю область солнечного спектра, начиная от крайних ультрафиолетовых лучей и до далекой инфракрасной области[1]. В земной атмосфере озона мало, он располагается в виде слоя (10 - 40 км) с центром тяжести на высоте около 22 км, но обладает сильной поглощательной способностью. Его полосы: п.Гартлея (200 - 320 нм; lmax=255 нм); п.Шапюи (500 - 650 нм; lmax=600 нм). Наибольшее значение в поглощении лучистой энергии в атмосфере имеет водяной пар (H2O), которого очень много в нашей атмосфере (влажность, облака и т.п.), его полосы поглощения: rst (0,926 - 0,978 мкм; lmax=0,935 мкм); F (1,095 - 1,165 мкм; lmax=1,130 мкм); Y (1,319 - 1,498 мкм; lmax=1.395); W (1,762 - 1.977 мкм; lmax=1.870 мкм); C (2,520 - 2,845 мкм; lmax=2,680 мкм). Наиболее точная формула для расчета величины поглощенной в атмосфере энергии солнечной радиации имеет вид:

DE=0,156*(m*v)0,294 кал/см2* мин.[2] (3),

где m - пройденный лучами путь, v - общее содержание водяного пара в вертикальном столбе атмосферы единичного сечения (1 см2). Далее рассмотрим атмосферные аэрозоли и пыль, их содержание зависит от высоты, они влияют на уменьшение прозрачности атмосферы.

Рассмотрим отраженную радиацию, т.е. радиацию, которая достигает земной поверхности, частично отражается от нее и вновь возвращается в атмосферу. Также отраженная радиация - это и излучение, отраженное от облаков.

Количество отраженной некоторой поверхностью энергии в сильной мере зависит от свойств и состояния этой поверхности, длины волны падающих лучей. Можно оценить отражательную способность любой поверхности, зная величину ее альбедо, под которым понимается отношение величины всего потока, отраженного данной поверхностью по всем направлениям, к потоку лучистой энергии, падающему на эту поверхность; обычно его выражают в процентах (ТАБЛИЦА 1[1]).

ТАБЛИЦА 1

ВИД ПОВЕРХНОСТИ

АЛЬБЕДО

СУХОЙ ЧЕРНОЗЕМ

14

ГУМУС

26

ПОВЕРХНОСТЬ ПЕСЧАНОЙ ПУСТЫНИ

28 -38

ПАРОВОЕ ПОЛЕ ( СУХОЕ)

8 - 12

ВЛАЖНОЕ ВСПАХАННОЕ ПОЛЕ

14

СВЕЖААЯ ( ЗЕЛЕНАЯ ) ТРАВА

26

СУХАЯ ТРАВА

19

РОЖЬ И ПШЕНИЕЦА

10 - 25

ХВОЙНЫЙ ЛЕС

10 - 12

ЛИСТВЕННЫЙ ЛЕС

13 - 17

ЛУГ

17 - 21

СНЕГ

60 - 90

ВОДНЫЕ ПОВЕРХНОСТИ

2 - 70

ОБЛАКА

60 - 80

Рассмотрим рассеянную радиацию. Рассеяние в атмосфере может происходить на молекулах газов (молекулярное рассеяние) и частицах (крупных (l<<r), средних (l~r), мелких (l>>r)), находящихся в атмосфере, оно зависит также и от наличия облачности. Основы этой теории заложены Рэлеем, но позже она была усоршенствована другими учеными уже для различных размеров, форм и свойств частиц. Для анализа явлений рассеяния используют уравнение переноса излучения; запишем его в векторной форме[3: (4),

где Si - параметры Стокса (S1=I - суммарная интенсивность, S2=I*p*cos(Y0), Y0 - угол поворота направления максимальной поляризации относительно плоскости референции, p - степень линейной поляризации, S3=I*p*sin(Y0), S4=I*q, q - степень эллиптичности поляризации),fij - матрица рассеяния. При молекулярном рассеянии диполи под действием падающей волны начинают двигаться с ускорением, следовательно излучают волны с частотой падающей волны, т.е. происходит рассеяние света на данных молекулах. Рассмотрим коэффициент молекулярного ослабления kMS и учтем, что рассеяние должно происходить тогда, когда показатель преломления частицы относительно среды n не равен единице, тогда:

[3] (5) (l << r),

где N - число частиц в единице объема, l - длина падающей волны. Также запишем функцию, показывающую разбрасывание света по углам”:

fMS(j)=3*tMS*(1+cos2(j))/(16*p)[3] (6),

где tMS - оптическая толща молекулярного рассеяния. Если ввести параметр D, характеризующий анизотропию молекул, то формула (6) примет вид:

fMS(j)=3*tMS*(1+D+(1-D)*cos2(j))/(16*p)[3] (7)

Обычно молекулярный рассеянный свет поляризован:

[3](8),

где Pлин - степень линейной поляризации.

При попадании света на крупные частицы, обычно находящиеся вблизи поверхности Земли, происходит частичная потеря импульса падающей электро-магнитной волны, т.е. на молекулу действует световое давление, тогда будем иметь эффекты дифракции, отражения и преломления, пронукновения электро-магнитной волны вовнутрь частицы. В результате может возникнуть интерференция падающей волны и вышедшей из частицы за счет явления внутреннего отражения. Все эти явления описываются в теории Ми. Предположения теории Ми: частицы сферические, однородные, не сталкиваются; атмосфера - плоско-параллельный слой. Т.к. показатель преломления частиц, описываемых теорией Ми, - комплексный: m=n+i*c, где n - обычный показатель преломления, c - характеризует поглощение волны частицей.

В результате рассеяния прямого солнечного излучения в атмосфере, она сама становится источником излучения, которое достигает земной поверхности в виде рассеянного излучения. Максимум в спектре рассеянной радиации смещен в более коротковолновую область, чем у солнечного спектра; также состав рассеянной радиации зависит от высоты Солнца (рис.4.[1]).

Рис.4. Распределение энергии в спектре рассеянного света, посылаемого различными точками небесного свода.

Рассеянная радиация также зависит и от облачности, что проиллюстрировано на рис.5.[1], который построен по экспериментальным данным для г. Павловска. Нередки случаи, когда рассеянная радиация достигает значений, сравнимых с потоком прямой солнечной радиации[1]. Это явление обычно происходит в северных широтах. Оно объяснимо тем, что чистый сплошной снежный покров имеет черезвычайно большую отражательную способность. Облака являются средами, которые могут сильно рассеивать свет; опыты показали, что плотные облака толщиной 50 - 100 метров уже полностью рассеивают прямые солнечные лучи.

Рис.5. Рассеянная радиация атмосферы при безоблачном небе и при сплошной облачности (10 баллов).

Реферат содержит

СТРАНИЦ

ТАБЛИЦ

РИСУНКОВ

ФОРМУЛ

14

1

5

8

Литература

  1. “Курс метеорологии под ред. Г.Н.Тверского, ГИДРОМЕТЕОИЗДАТ, Л., 1951г..

  2. Справочник Атмосфера, ГИДРОМЕТЕОИЗДАТ, Л., 1991г..

  3. Лекции Павлова В.Е. по оптике атмосферы для студентов III - V курсов специализации Оптическое зондирование атмосферы, АГУ, Барнаул, 1996г..

Похожие работы:

  • Радиационный пояс Земли

    Статья >> Математика
    ... . Ультрафиолетовое излучение Солнца может однократно - и реже двукратно - ионизировать атомы. Образовавшиеся заряженные ... не погибнут в атмосфере. Космический аппарат на орбите, проходящей под радиационным поясом, зарегистрирует ...
  • Вода в атмосфере

    Реферат >> География
    ... водяные пары, содержащиеся в атмосфере, существенно воздействуют и на радиационный режим планеты: с их ... принято разделять на несколько типов: Радиационные туманы — туманы, которые ... и лёгком бризе. Часто радиационный туман возникает в условиях температурной ...
  • Атмосфера Земли

    Реферат >> География
    ... большое влияние на тепловой режим Земли и ее атмосферы. Рассмотрим схему строения ... водорода - протонов. За пределами атмосферы находятся радиационные пояса Земли. Систему частиц, ... сказывается на их популяциях: нарушается режим обитания, питания, часть особей ...
  • Радиационная защита предприятия. Обеспечение устойчивой работы предприятия в условиях радиоактивного заражения

    Реферат >> Безопасность жизнедеятельности
    ... широко распространен также в приземном слое атмосферы, подпочвенном воздухе и подземных водах ... в результате испытания ядерного оружия в атмосфере, и, несмотря на то, что ... и радиоактивных газов. 5. Определяется режим радиационной защиты рабочих и служащих. По ...
  • Радиационные аварии, их виды, динамика развития, основные опасности

    Контрольная работа >> Безопасность жизнедеятельности
    ... радиоактивных веществ в окружающую атмосферу; управляющими, которые обеспечивают ... спасательных работ; прогнозирование радиационной обстановки; организация радиационной разведки; проведение тренировок ... облака убежища приводятся в режим полной изоляции, а ПРУ ...
  • Радиационно опасные объекты

    Реферат >> Военная кафедра
    ... г. Содержание: 1.Введение…………………………………………………………...1 2.Радиационная опасность………………………………………..1 3.Радиационно опасные объекты………………………………...2 3.1.Ядерное оружие ... атмосфере, причем мощность взрывов была существенно меньше, а сами испытания проводились реже ...
  • Радиационная безопасность при эксплуатации и ремонте оборудования Курской АЭС

    Учебное пособие >> Безопасность жизнедеятельности
    ... газоаэрозольных отходов перед удалением их в атмосферу. 2.9 Курская АЭС укомплектована по установленным ... . "Режим ног" должен устанавливаться для любых помещений, если по результатам обследования радиационной ...
  • радиационные ЧС

    Реферат >> Безопасность жизнедеятельности
    ... радиоактивного заражения. Для определения режим работы объекта, исключающего облучение ... и с момента заражения местности режим работы не изменяют. В отношении ... авария на радиационно-опасном объекте, с выбросом радиоактивной пыли в атмосферу. Заражение ...
  • Атмосфера Земли

    Реферат >> География
    ... войны, которые способны вызвать радиационный мутагенез и загрязнение атмосферы пылью и дымом пожарищь, то ... ощущаем в повседневной жизни. Климат - многолетний режим погоды. Классификация климатов, климатические пояса ...
  • Физическая география

    Шпаргалка >> География
    ... мало. Климаты субтропических поясов Зимой радиационный режим и характер циркуляции складываются почти так ... людей. 56. Геоэкологические проблемы атмосферы Загрязнение атмосферы происходит в результате работы промышленности, транспорта ...